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Definition of Simple Linear Regression
Correlation:  measures the “strength” of a linear relationship between two variables.  

Regression:  measures the way the expectation of one (“dependent”) variable changes when 
another (“independent”) variable changes.  

Formally, estimate what is:
𝑑𝑑𝑑𝑑(𝑦𝑦)
𝑑𝑑𝑑𝑑

, where "d" represents "change in".
◦ A linear trend line on the scatterplot.
◦ Regression estimates the slope.  
◦ “Fit” a straight line as closely as possible to the data points.



Regression parameters
Trend line form:

𝑦𝑦 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑥𝑥.

Define parameters for the intercept and slope;
◦ use calculus to estimate them.
◦ 𝛽𝛽0 as the intercept and 𝛽𝛽1 as the slope. Then,

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥.



Residuals
𝐸𝐸(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖

gives you the expectation of y conditional on x.

Unless all the data points lie on a perfect line, there is a residual distance between the trend line 
and each data point, [𝑦𝑦𝑖𝑖 − 𝐸𝐸(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)]. 
◦ Sometimes called the “error term”. 
◦ Denoted 𝑢𝑢𝑖𝑖:

𝑢𝑢𝑖𝑖 ≡ 𝑦𝑦𝑖𝑖 − 𝐸𝐸 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 .



Stochastic and non-stochastic
𝑦𝑦𝑖𝑖 can be decomposed into two parts:

1) the part that can be explained by y's relationship with x, and 

2) the residual that cannot be explained by the relationship with x.
𝑢𝑢𝑖𝑖 ≡ 𝑦𝑦𝑖𝑖 − 𝐸𝐸 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 → 𝑦𝑦𝑖𝑖 = 𝐸𝐸 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 + 𝑢𝑢𝑖𝑖 ⇔ 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝑢𝑢𝑖𝑖



Parameters and statistics
The model on the previous slide contains population parameters—as if their values were known.

In reality they are not known and must be inferred from a sample.
◦ Just like population mean, proportion and variance.

The estimators we use to infer these values are:
𝛽̂𝛽0 , which estimates 𝛽𝛽0, and 𝛽̂𝛽1, which estimates 𝛽𝛽1 .

The residual estimates for the sample are �𝑢𝑢𝑖𝑖.



Deriving Ordinary Least Squares (OLS) 
estimates
Estimating the parameters (slope and intercept) relies on calculus,
◦ as does every problem in economics in which you try to optimize something, 
◦ e.g., utility maximization or cost minimization.
◦ In this application we minimize the sum of the squares of the residuals and therefore 

the distance between the line and the data points.



Sum of squared residuals
Re-arrange the function relating y to x:

�𝑢𝑢𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝛽̂𝛽0 − 𝛽̂𝛽1𝑥𝑥𝑖𝑖 → �𝑢𝑢𝑖𝑖
2 = 𝑦𝑦𝑖𝑖 − 𝛽̂𝛽0 − 𝛽̂𝛽1𝑥𝑥𝑖𝑖

2.

Sum of Squared Residuals (𝑆𝑆𝑆𝑆𝑆𝑆) = �
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖
2 = �

𝑖𝑖=1

𝑛𝑛

(𝑦𝑦𝑖𝑖 − 𝛽̂𝛽0 − 𝛽̂𝛽1𝑥𝑥𝑖𝑖)2



Sum of squared residuals (continued)
𝑆𝑆𝑆𝑆𝑆𝑆 = �

𝑖𝑖=1

𝑛𝑛

(𝑦𝑦𝑖𝑖2 + 𝛽̂𝛽02 + 𝛽̂𝛽12𝑥𝑥𝑖𝑖2 − 2𝛽̂𝛽0𝑦𝑦𝑖𝑖 − 2𝛽̂𝛽1𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 + 2𝛽̂𝛽0𝛽̂𝛽1𝑥𝑥𝑖𝑖)

The previous line squares the term in the sum.  The next one expands the sum. 
◦ Since the beta hat terms are not indexed with i, they can be pulled through the sums.

𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖2 + 𝑛𝑛𝛽̂𝛽02 + 𝛽̂𝛽12�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖2 − 2𝛽̂𝛽0�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 2𝛽̂𝛽1�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 + 2𝛽̂𝛽0𝛽̂𝛽1�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖



Minimizing SSR
By differentiating the above line with respect to the two statistics, 𝛽̂𝛽0 and 𝛽̂𝛽1.

The first order conditions for this minimum are:
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝛽̂𝛽0

= 0 and
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝛽̂𝛽1

= 0

Solving them simultaneously gives you the estimates.

1
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝛽̂𝛽0

= 2𝑛𝑛𝛽̂𝛽0 − 2�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 + 2𝛽̂𝛽1�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖

2
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝛽̂𝛽1

= 2𝛽̂𝛽1�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖2 − 2�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 + 2𝛽̂𝛽0�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖



Minimizing SSR (continued)
Setting (1) equal to zero and solving for 𝛽̂𝛽0:

2𝑛𝑛𝛽̂𝛽0 − 2�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 + 2𝛽̂𝛽1�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 = 0 → 𝛽̂𝛽0 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝛽̂𝛽1�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 = �𝑦𝑦 − 𝛽̂𝛽1𝑥̅𝑥

Substituting this into condition (2) gives you:

2𝛽̂𝛽1�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖2 − 2�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 + 2(�𝑦𝑦 − 𝛽̂𝛽1𝑥̅𝑥)�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖



Minimizing SSR (continued)
Setting the above expression equal to zero and solving for 𝛽̂𝛽1 gives you:

2𝛽̂𝛽1�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖2 − 2�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 + 2 �𝑦𝑦 − 𝛽̂𝛽1𝑥̅𝑥 �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 = 0 → 𝛽̂𝛽1 �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖2 − 𝑥̅𝑥�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖

= �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − �𝑦𝑦�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 , and

𝛽̂𝛽1 =
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − �𝑦𝑦 ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖2 − 𝑥̅𝑥 ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖

.



Simplifying the OLS estimates
We can further simplify this using the definition of 𝑥̅𝑥:

𝑥̅𝑥 ≡
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 ⇔ 𝑛𝑛𝑥̅𝑥 ≡�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖

𝛽̂𝛽1 =
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑛𝑛𝑥̅𝑥
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖2 − 𝑥̅𝑥𝑛𝑛𝑥̅𝑥

=
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − �𝑦𝑦)

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2



Simplifying the OLS estimates 
(continued)
It can be shown that the numerator in this expression is equal to:

�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑛𝑛𝑥̅𝑥 = 𝑠𝑠𝑥𝑥𝑥𝑥(𝑛𝑛 − 1)

And the denominator equals:

�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖2 − 𝑥̅𝑥𝑛𝑛𝑥̅𝑥 = 𝑠𝑠𝑥𝑥2(𝑛𝑛 − 1)

So the slope of the regression line is:

𝛽̂𝛽1 =
𝑠𝑠𝑥𝑥𝑥𝑥(𝑛𝑛 − 1)
𝑠𝑠𝑥𝑥2(𝑛𝑛 − 1)

or 𝛽̂𝛽1 =
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

=
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑥𝑥

.

And the intercept is:

𝛽̂𝛽0 = �𝑦𝑦 −
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

𝑥̅𝑥



Correlation and regression (concluded)
Since the regression coefficient, 𝛽̂𝛽1, and the correlation coefficient are both related to 
covariance, there is a relationship between regression and correlation, too.  Specifically,

𝛽̂𝛽1 =
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

=
𝑟𝑟𝑥𝑥𝑥𝑥𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥2

, where 𝑟𝑟𝑥𝑥𝑥𝑥 is the correlation coefficient.

Since standard deviation is the square root of the variance, we can simplify this to:

𝛽̂𝛽1 =
𝑟𝑟𝑥𝑥𝑥𝑥𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥

.



Example from the review
In the case of the population, wage 
relationship from earlier, the regression 
slope is 0.0385.  

Suggests that on average, an extra 
100,000 population increases the weekly 
wage by 3.85 log points, or roughly 
3.85%.



OLS derivation concluded
The upward-sloping line is the linear regression estimate.

Note that the line goes through the point (𝑥̅𝑥, �𝑦𝑦).

This suggests that we can fit the same line on a “de-meaned” data set that will have an intercept 
of zero.

Putting together both estimates, we can specify the expected value of y conditional on x.

𝐸𝐸 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 = �𝑦𝑦 −
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

𝑥̅𝑥 +
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

𝑥𝑥𝑖𝑖 ⇔ 𝐸𝐸 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 − �𝑦𝑦 =
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)



Properties of OLS on any sample of data
The observed value of y can be broken into an “explained” part and an “unexplained” part. 
◦ The textbook calls the conditional expectation, “ �𝑦𝑦𝑖𝑖”.
◦ This is also sometimes called a “fitted value” of y.  The estimated residual, then is:

�𝑢𝑢𝑖𝑖 = 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖 − �𝑦𝑦 + �𝑦𝑦 − �𝑦𝑦𝑖𝑖 ⇔ 𝑦𝑦𝑖𝑖 − �𝑦𝑦 = �𝑢𝑢𝑖𝑖 + �𝑦𝑦𝑖𝑖 − �𝑦𝑦
𝑦𝑦𝑖𝑖 − �𝑦𝑦 2 = �𝑢𝑢𝑖𝑖

2 + �𝑦𝑦𝑖𝑖 − �𝑦𝑦 2 + 2�𝑢𝑢𝑖𝑖 �𝑦𝑦𝑖𝑖 − �𝑦𝑦

�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − �𝑦𝑦 2 = �
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖
2 + �

𝑖𝑖=1

𝑛𝑛

�𝑦𝑦𝑖𝑖 − �𝑦𝑦 2 + 2�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖 �𝑦𝑦𝑖𝑖 − �𝑦𝑦 .

The last term sums to zero.  This digression shows this.



Variance decomposition
So the sum of squared deviations from the mean (“SST”) is the sum of the sum of squared 
residuals (“SSR”) and the sum of squares explained by regression (“SSE”).

�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − �𝑦𝑦 2 = �
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖
2 + �

𝑖𝑖=1

𝑛𝑛

( �𝑦𝑦𝑖𝑖 − �𝑦𝑦)2 or 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆



Coefficient of determination
The strength of a regression model can be measured by the proportion of y's total variation that 
can be explained by x.  This is called the coefficient of determination (𝑟𝑟2).

𝑟𝑟2 =
∑𝑖𝑖=1𝑛𝑛 ( �𝑦𝑦𝑖𝑖 − �𝑦𝑦)2

∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦 2 =

𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

2

(𝑛𝑛 − 1)𝑠𝑠𝑥𝑥2

(𝑛𝑛 − 1)𝑠𝑠𝑦𝑦2
=
𝑠𝑠𝑥𝑥𝑥𝑥2

𝑠𝑠𝑥𝑥2𝑠𝑠𝑦𝑦2

The square root of the coefficient of determination is:

𝑟𝑟2 =
𝑠𝑠𝑥𝑥𝑥𝑥2

𝑠𝑠𝑥𝑥2𝑠𝑠𝑦𝑦2
=

𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦

= 𝑟𝑟𝑥𝑥𝑥𝑥 the correlation coefficient!



OLS properties concluded
Make sure that you take the sign (+/-) from the regression coefficient for this square root, or else 
all correlations will seem to be positive.

For the regression of wage on population, the coefficient of determination is 0.2101—which is 
the square of the correlation coefficient, 0.4583.



Units of measurement and functional 
form
A fundamental skill that all empiricists must have is being able to interpret the meaning of their 
results.

OLS estimates of the slope and intercept parameters have specific interpretations:
◦ namely that the slope coefficient estimates the effect (on y) of increasing x by one unit, and 
◦ the intercept estimates the expected value of y when x equals zero.

∆𝑦𝑦 = 𝛽𝛽1∆𝑥𝑥; ∆𝑥𝑥 = 1 → ∆𝑦𝑦 = 𝛽𝛽1 and 𝑦𝑦 |𝑥𝑥 = 0 = 𝛽𝛽0 + 0.



Units of measurement
Consider a regression model estimating how long a labor dispute (“strike”) will last.
◦ This could be measured in days, weeks, hours, nanoseconds, etc.  

Say that your model is using the average labor market experience of the union members to 
explain how long their strike lasts (x=average experience in years).  

Initially you measure duration of the strike in hours.
◦ Accordingly 𝛽𝛽1 measures the additional number of hours the strike is expected to last when the union 

involved has 1 extra year (on average) of experience.
∆𝑥𝑥 = 1 year → ∆𝑦𝑦 = 𝛽𝛽1 hours.



Units of measurement (continued)
Now imagine you measure duration of the strikes in days instead.

24 hours = 1 day; if 𝑦𝑦 ≡ hours and 𝑦𝑦′ ≡ days, then 𝑦𝑦′ =
y

24
.

So,
𝑦𝑦 = 24𝑦𝑦′.

Plug this into the regression model that uses hours to see how to interpret the new effect of an 
extra year of experience.

𝑦𝑦′ =
𝛽𝛽0
24

+
𝛽𝛽1
24

𝑥𝑥 + 𝑢𝑢; ∆𝑥𝑥 = 1 year → ∆𝑦𝑦′ =
𝛽𝛽1
24

days.



Units of measurement (concluded)
The effect is now precisely (and unsurprisingly) 1/24 as large as before!  

To make this concrete, if you regress hours of duration on average experience and the coefficient 
estimate is (𝛽̂𝛽1 = 72 hours), a regression of days of duration on average experience should yield 
an estimate of exactly (𝛽̂𝛽1 = 3 days).  

The estimated effect does not actually change when you change units of measurement—
because you’re just scaling one of the variables by a constant!
◦ Only the interpretation changes.
◦ The lesson is merely (but crucially) to be cognizant of the units of measurement whenever interpreting 

regression results.



Other variable transformations
This principle can be generalized to transformations that do not involve multiplying by a 
constant.

For example the natural logarithm, 
◦ frequently done in earnings regressions in labor economics (𝑦𝑦 ≡ ln $ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ).  
◦ For simplicity again imagine you are explaining earnings using labor market experience so that:

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑢𝑢; ∆𝑥𝑥 = 1 year → ∆𝑦𝑦 = 𝛽𝛽1.



Logarithms and percent change
But what does ∆𝑦𝑦 mean?  

It does not mean the additional $ of earnings, because y isn’t measured in dollars.

Instead,
∆𝑦𝑦 = ln 𝑦𝑦1 − ln 𝑦𝑦0 ,

which is an approximation of the %∆ in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.



Logs and percent change (continued)
Recall that,

%∆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≡ 100 ∗
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒0

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒0
= 100 ∗

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒0

− 1 , so

1 +
%∆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

100
=
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒0

. Taking the log of both sides gives you,

ln 1 +
%∆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

100
= ln 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1 − ln 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒0 = ∆𝑦𝑦 = 𝛽𝛽1.



Logs and percent change (concluded)
Taking the “anti-log” of 𝛽𝛽1 shows you how to interpret the estimate as a %∆.

ln 𝑒𝑒𝛽𝛽1 = 𝛽𝛽1 → 𝑒𝑒𝛽𝛽1 = 1 +
%∆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

100
⟺ 100 ∗ 𝑒𝑒𝛽𝛽1 − 1 = %∆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

There will be numerous opportunities to practice this in homework exercises, but here is one 
concrete example.  If your estimate of 𝛽𝛽1 is 0.05, you have estimated a % increase in earnings 
(resulting from an extra year of experience) of:

%∆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 100 ∗ 𝑒𝑒0.05 − 1 = 5.13%.



Log-level models
Estimating the effect of level of experience on the log of wage:
◦ (called a “log-level” regression),
◦ estimates a constant rate of return on experience, rather than a constant increase.  
◦ They have proven much more appropriate in settings like earnings (among many others) because 

employees usually get % pay raises instead of fixed dollar amounts per year.  

One more way of explaining the %∆ interpretation of 𝛽𝛽1 in a “log-level” regression uses the 
chain rule of calculus.



Log-log models
The last example of regression using transformations we will examine here is the “log-log” 
model, in which x and y are expressed in logarithms.

Building on the last result (using the chain rule), if the model we estimate is:
ln 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥 + 𝑢𝑢,

Then,

→
𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥

= 𝛽𝛽1 =
𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥

=
1
𝑦𝑦
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥.



Log-log models:  constant elasticity
The last equality can be re-arranged:

𝛽𝛽1 =
𝑑𝑑𝑑𝑑
𝑦𝑦

𝑥𝑥
𝑑𝑑𝑑𝑑

=
%∆𝑦𝑦
%∆𝑥𝑥

,

which any good economics student should recognize as an elasticity.

So a regression with both variables transformed estimates a constant elasticity relationship 
between x and y:  “if x increases by 1%, y changes by 𝛽𝛽1%.”



Expected value and variance of OLS 
estimators:  under SLR assumptions 1-4
Any statistic calculated from a sample has an expected value and a standard error.
◦ OLS estimation relies on some assumptions to derive its expectation and standard error. 

Explicitly one of the ones OLS makes is that the model is linear in its parameters:

SLR. 1 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝑢𝑢, in the population.

This analysis has also assumed that we have estimated the population with a random sample, 
i.e., one that is representative of the population (if it were drawn many times).
◦ This is assumption (SLR.2) in the text.



OLS assumptions (continued)
We have assumed that the estimator is defined by assuming that there is variation in x (SLR.3).  
If this was not the case, the denominator of 𝛽𝛽1 would be zero.

Since the linear model includes an intercept, we have essentially de-meaned the error term, u, 
and made its expected value zero.
◦ This assumption has shown up in the derivation of 𝑅𝑅2 already.  We can make it by imagining that any 

non-zero mean in the error could simply be added to the intercept term.  



OLS assumptions (continued)
For several reasons it is necessary to assume mean independence between the error term and x:  

𝛽̂𝛽1 is an unbiased estimator (as we will show) if this assumption holds and the model requires it for �𝑦𝑦
to accurately estimate the expected value of y conditional on x.

In order for this to hold, the model,
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝑢𝑢, must satisfy

𝐸𝐸 𝑦𝑦 𝑥𝑥 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 0.



OLS assumptions (concluded)
Thus 𝐸𝐸 𝑢𝑢 𝑥𝑥 must equal zero (Assumption SLR.4).
◦ Combined with the zero mean assumption for the error term (unconditionally), you have the full zero 

conditional mean assumption:
𝐸𝐸 𝑢𝑢 𝑥𝑥 = 𝐸𝐸 𝑢𝑢 = 0.

Now to verify the claim preceding SLR.4 (that under these assumptions 𝛽̂𝛽1 is unbiased).  

To be unbiased, the expected value of beta hat should equal the population parameter, 𝛽𝛽1:
𝐸𝐸 𝛽̂𝛽1 = 𝛽𝛽1.



Expected value of the OLS estimator
The estimator is calculated as:

𝛽̂𝛽1 =
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − �𝑦𝑦)

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 =
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑦𝑦𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 .

Substitute the regression equation in for 𝑦𝑦𝑖𝑖.

𝛽̂𝛽1 =
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝑢𝑢𝑖𝑖)

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2



Expected value of the OLS estimator 
(continued)
Dwelling on the numerator for a moment, it can be multiplied out as follows:

�
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝑢𝑢𝑖𝑖) = 𝛽𝛽0�
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥) + 𝛽𝛽1�
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑥𝑥𝑖𝑖 + �
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑢𝑢𝑖𝑖 .

Simplify this.  
◦ The first term is zero because the sum of deviations from the sample mean is zero.
◦ The x terms in the second term are actually the same as the denominator, too:

�
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑥𝑥𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖2 − 𝑥̅𝑥𝑛𝑛𝑥̅𝑥 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 .



Expected value of the OLS estimator 
(continued)
And the last term simplifies to:

�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 𝑢𝑢𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑢𝑢𝑖𝑖 − 𝑥̅𝑥 ∗�
𝑖𝑖=1

𝑛𝑛

𝑢𝑢𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑢𝑢𝑖𝑖 − 0.

So now we have:

𝛽̂𝛽1 =
𝛽𝛽1 ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 + ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑢𝑢𝑖𝑖

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 = 𝛽𝛽1 +
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑢𝑢𝑖𝑖

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 .



Expectation and unbiasedness
To show un-biasedness, take the expectation.

𝐸𝐸 𝛽̂𝛽1 = 𝛽𝛽1 + 𝐸𝐸
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑢𝑢𝑖𝑖

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 .

The second term of the expression above will be zero if the numerator is zero, which it will be if:
𝐸𝐸 𝑥𝑥𝑖𝑖𝑢𝑢𝑖𝑖 = 𝐸𝐸 𝑥𝑥 ∗ 𝐸𝐸 𝑢𝑢 𝑥𝑥 = 0.



Unbiasedness of OLS
If assumption SLR.4 holds, this is true, the second term is zero, and the expectation of 𝛽̂𝛽1 is 𝛽𝛽1
(unbiased).

If any of the 4 assumptions is violated, OLS estimators will be biased.  

In this introductory lecture, it is beyond our scope to discuss the direction of bias and what can 
be done to eliminate it.
◦ We postpone most of that discussion for the remainder of the course, but for now suffice it to say that 

the most tenuous assumption in econometric applications is SLR.4.



Variance of the OLS estimator
Measures how far from its mean the estimator is likely to be in any given sample.

Even if a statistic is unbiased, a finite sample estimate could still be “unlucky” and vary around 
the true value.

Here we show that the standard error of 𝛽̂𝛽1 is:

𝑠𝑠𝑠𝑠(𝛽̂𝛽1) ≡ 𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1
1
2 =

∑𝑖𝑖=1𝑛𝑛 �𝑢𝑢𝑖𝑖
2

𝑛𝑛 − 2 ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 =
𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛 − 2

∗ �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2

−1



Homoskedasticity
The variance of beta 1 is further equal to:

𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 =
𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛 − 2

∗ �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2

−1

= �𝜎𝜎2 �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2

−1

,

where �𝜎𝜎2 is an estimate of the variance of the error (𝑢𝑢) under the assumption of 
homoskedasticity, i.e.,

𝑉𝑉𝑉𝑉𝑉𝑉 𝑢𝑢 𝑥𝑥 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢) = 𝜎𝜎2.



Variance of the OLS estimator 
(continued)
Variance is the expected squared deviation from a random variable’s mean (expected value).

𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥 ≡ 𝐸𝐸 𝑥𝑥 − 𝐸𝐸 𝑥𝑥 2 → 𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 = 𝐸𝐸 𝛽𝛽1 +
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑢𝑢𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2 − 𝛽𝛽1

2

.

Most introductory econometrics, including this one, an additional simplification is used:  treating 
x as a non-random variable. The consequence of treating x as a fixed regressor is that the 
variability of the estimator will come only from the error term.

𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 = 𝐸𝐸
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑢𝑢𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2

2

= 𝐸𝐸
∑𝑖𝑖=1𝑛𝑛 𝑑𝑑𝑖𝑖𝑢𝑢𝑖𝑖
𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥

2

;𝑑𝑑𝑖𝑖 ≡ 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥.



Variance of the OLS estimator 
(continued)
The constant (total sum of squares of x) can now be pulled through the expectation, and 
attention can be focused on the sum in the numerator.  

𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 = 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥−2 ∗ 𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑑𝑑𝑖𝑖𝑢𝑢𝑖𝑖

2

Squaring the sum of 𝑛𝑛 terms means summing all the possible cross-products, i.e.,
𝑑𝑑1𝑢𝑢1+. . .𝑑𝑑𝑛𝑛𝑢𝑢𝑛𝑛 ∗ 𝑑𝑑1𝑢𝑢1+. . .𝑑𝑑𝑛𝑛𝑢𝑢𝑛𝑛 = 𝑑𝑑12𝑢𝑢12 + 𝑑𝑑1𝑢𝑢1𝑑𝑑2𝑢𝑢2+. . .𝑑𝑑𝑛𝑛2𝑢𝑢𝑛𝑛2 .



Variance of the OLS estimator 
(continued)
There will be 𝑛𝑛 “own” products (each element times itself) and 𝑛𝑛 𝑛𝑛−1

2
unique “cross” products, 

i.e., 𝑑𝑑𝑖𝑖𝑢𝑢𝑖𝑖 ∗ 𝑑𝑑−𝑖𝑖𝑢𝑢−𝑖𝑖.

There are 2 of each of the latter group.  So,

𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 = 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥−2 ∗ 𝐸𝐸�
𝑖𝑖=1

𝑛𝑛

𝑑𝑑𝑖𝑖2𝑢𝑢𝑖𝑖2 + 2 ∗ 𝐸𝐸 sum of cross products .



Variance of the OLS estimator 
(continued)
Conveniently the sum of the cross products has an expectation of zero because the draws of the 
sample are independent, i.e., the correlation between observations 1 and 21 (or any pair of 
randomly chosen observations) is zero.

So now we are just down to the “own” products:

𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 = 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥−2 ∗ 𝐸𝐸�
𝑖𝑖=1

𝑛𝑛

𝑑𝑑𝑖𝑖2𝑢𝑢𝑖𝑖2 = 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥−2 ∗�
𝑖𝑖=1

𝑛𝑛

𝑑𝑑𝑖𝑖2𝐸𝐸 𝑢𝑢𝑖𝑖2 .



Variance of the OLS estimator 
(continued)
Since the expectation of 𝑢𝑢 is zero, the expectation of 𝑢𝑢2 is the variance of 𝑢𝑢.

Under homoskedasticity, this is the constant, 𝜎𝜎2, which can be pulled through the sum:

𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 = 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥−2 ∗�
𝑖𝑖=1

𝑛𝑛

𝑑𝑑𝑖𝑖2𝜎𝜎2 = 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥−2 ∗ 𝜎𝜎2�
𝑖𝑖=1

𝑛𝑛

𝑑𝑑𝑖𝑖2 .

Lastly note that the sum of 𝑑𝑑𝑖𝑖2 equals 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥, so you can simplify as follows.

𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 = 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥−2 ∗ 𝜎𝜎2 ∗ 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥 =
𝜎𝜎2

𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥
=

𝜎𝜎2

𝑛𝑛 − 1 variance of 𝑥𝑥
.



Variance of the OLS estimator 
(concluded)
The last equality serves to remind us of what happens to estimates as the sample size grows.  
“n” appears only in the denominator, so as it gets large, the variance of beta 1 gets small and the 
estimator gets more precise.

In order to use this measure practically, an estimate of the error variance is needed, though, 
which we have in the form of:

�𝜎𝜎2 ≡
1

𝑛𝑛 − 2
�
𝑖𝑖−1

𝑛𝑛

�𝑢𝑢𝑖𝑖2 , where �𝑢𝑢 denotes the residuals 𝑦𝑦𝑖𝑖 − �𝑦𝑦 ;𝐸𝐸 �𝜎𝜎2 = 𝜎𝜎2.

Proof of the un-biasedness is left as an exercise (see p. 56 in the text).



Standard error of the OLS estimator
Substituting this into the variance of 𝛽̂𝛽1 and taking a square root gives the standard error of 𝛽̂𝛽1
as stated earlier.

𝑠𝑠𝑠𝑠 𝛽̂𝛽1 ≡ 𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1
1
2 =

∑𝑖𝑖=1𝑛𝑛 �𝑢𝑢𝑖𝑖
2

𝑛𝑛 − 2
∗

1
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2

1
2

=
�𝜎𝜎

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2
1
2

The standard error of an estimator with be eminently useful a bit later in the course when we 
discuss statistical inference, i.e., generating a confidence interval where the population 
parameter is expected to lie and testing whether its value is different from zero.



Conclusion
The topic of inference is postponed until chapter 4.

First we will generalize the simple linear regression model to include multiple explanatory 
variables.



y is uncorrelated with the residuals 
(optional)

2�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖 �𝑦𝑦𝑖𝑖 − �𝑦𝑦 = 2 �
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖 �𝑦𝑦𝑖𝑖 − �𝑦𝑦�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖

Since the sum of residuals equals zero.  Then we substitute conditional expectation of y.

2 �
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖 �𝑦𝑦𝑖𝑖 − �𝑦𝑦�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖 = 2 �
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖(�𝑦𝑦 +
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)) − 0

2 �
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖(�𝑦𝑦 +
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)) = 2 �𝑦𝑦�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖 +
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥



Y is uncorrelated with the residuals 
(concluded)
Again the sum of residuals is zero, so the first sum drops out.

2 0 +
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 = 2
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑥̅𝑥
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖 = 2
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

�
𝑖𝑖=1

𝑛𝑛

�𝑢𝑢𝑖𝑖𝑥𝑥𝑖𝑖

Since the residuals from the estimated regression are independent, this sum is also zero.

Back.



Log-level models and percent change
ln 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝑢𝑢 →

𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦
𝑑𝑑𝑑𝑑

= 𝛽𝛽1 =
𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝑦𝑦
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

⇔ 𝛽𝛽1𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑
𝑦𝑦

=
%∆𝑦𝑦
100

, and 𝑑𝑑𝑑𝑑 = 1 → 100 ∗ 𝛽𝛽1 = %∆𝑦𝑦.

Back.



Error term is mean zero
Say we had the following regression model with error term, �𝑢𝑢, that had a non-zero mean, �𝑢𝑢, 
and that 𝑢𝑢𝑖𝑖 was the de-meaned version of u tilde.

𝑦𝑦𝑖𝑖 = 𝑏𝑏0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + �𝑢𝑢𝑖𝑖;𝑢𝑢𝑖𝑖 ≡ �𝑢𝑢𝑖𝑖 − �𝑢𝑢 ⇔ �𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖 + �𝑢𝑢,
so you could re − write
𝑦𝑦𝑖𝑖 = 𝑏𝑏0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝑢𝑢𝑖𝑖 + �𝑢𝑢,

and combine �𝑢𝑢 with 𝑏𝑏0, calling the sum 𝛽𝛽0.
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝑢𝑢𝑖𝑖;𝛽𝛽0 ≡ 𝑏𝑏0 + �𝑢𝑢, and 𝐸𝐸 𝑢𝑢𝑖𝑖 = 0.

Back.



x as a fixed regressor
See the “fixed in repeated samples” explanation on page 47.

It’s as if we took multiple samples of the same set of x observations, but each sample had 
different unobservable characteristics (𝑢𝑢).  

Practically speaking we can replace the denominator in the derivation (as they do in the text, p. 
53) with a constant, as well as the “x” terms in the numerator.

Back.
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