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Introduction
When you perform statistical inference, you are primarily doing one of two things:
◦ Estimating the boundaries of an interval in which you suspect the population parameter to lie, or
◦ Testing the validity of some hypothesized value for the population parameter.

These are procedures you have practiced in introductory statistics courses.  In ECON 360, we will 
apply these procedures to single regression coefficient estimates.
◦ Additionally we will apply them to combinations of estimates, e.g., we will ask questions like:
◦ Are several coefficients likely to be simultaneously equal to zero?
◦ What is the confidence interval for the sum of several coefficients?



Introduction (continued)
In order to answer questions like those above, one needs to know more about the distributions
of the estimators he is using.  
◦ Constructing a confidence interval requires a margin of error, that relies on a value from a statistical 

distribution, i.e., a “z” or  “t” value.  
◦ Testing a hypothesis about a parameter involves asking how likely one would be to get an estimate so 

far from the hypothesized value were the null hypothesis true.  If that probability (“p value”) is low, the 
null hypothesis is probably not true, but you need to know how the estimate’s sampling distribution 
looks in order to assess the probability in the first place.



Outline
Sampling Distributions of the OLS Estimators.

Testing Hypotheses about a Single Parameter.

Confidence Intervals.

Testing Hypotheses about a Linear Combination of Parameters.

Testing Multiple Linear Restrictions, the F Test.

Reporting Regression Results.



Sampling distributions of the OLS 
estimators
Consider the consequences of assuming 
(Assumption MLR.6) that the error term is 
normally distributed, 
◦ i.e., in addition to previous assumptions that 

it has zero expectation and constant 
variance.

All together these can be stated as follows:
𝑢𝑢~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 0,𝜎𝜎2 .



The classical linear model (CLM)
We are still assuming mean independence from the 𝑥𝑥 variables, as well.

A few consequences of this additional assumption:
◦ Combined with Assumptions MLR.1 through MLR. 5, the regression model is known as the classical 

linear model (“CLM”).
◦ The CLM is now the best (least variance) estimator among estimators—not just linear ones, as before 

under the BLUE result.
◦ 𝑦𝑦, conditional on all the 𝑥𝑥 variables, is also normally distributed; all the variance comes from the errors.



CLM (continued)
The last property is summarized on the figure (from the textbook) and in notation below:

𝑦𝑦 𝑥𝑥1. . . 𝑥𝑥𝑘𝑘 ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1+. . .𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘,𝜎𝜎2 .

We will examine circumstances under which MLR.6 is likely to be a bad “unrealistic” 
assumption—and there are plenty of them—later.
◦ You can show that the regression coefficients are normally distributed as well.



CLM (continued)
Recall the “partialling out” expression for regression estimates:

�𝛽𝛽1 =
∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖𝑦𝑦𝑖𝑖
∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖

2 , where

◦ �𝑁𝑁1is the residual from regressing 𝑥𝑥1 on the other x variables in the model.
◦ �𝑁𝑁𝑖𝑖𝑖 ≡ 𝑥𝑥𝑖𝑖𝑖 − �𝑥𝑥𝑖𝑖𝑖; �𝑥𝑥𝑖𝑖𝑖 is the fitted value.

�𝛽𝛽1 can be decomposed into its expected value and a deviation from the expected value by 
substituting for 𝑦𝑦𝑖𝑖 above:

�𝛽𝛽1 =
∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽3𝑥𝑥𝑖𝑖𝑖+. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘 + 𝑢𝑢𝑖𝑖)

∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖

2 .



CLM (continued)
Once again the (�𝑁𝑁𝑖𝑖𝑖) residuals are uncorrelated with the other 𝑥𝑥 variables.  Then,

�𝛽𝛽1 =
∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖(𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖)

∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖

2 =
𝛽𝛽1 ∑𝑖𝑖=1

𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖 + ∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖𝑢𝑢𝑖𝑖

∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖

2 .

⇔ �𝛽𝛽1 =
𝛽𝛽1 ∑𝑖𝑖=1

𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖 �𝑥𝑥𝑖𝑖𝑖 + �𝑁𝑁𝑖𝑖𝑖 + ∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖𝑢𝑢𝑖𝑖

∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖

2 =
𝛽𝛽1 ∑𝑖𝑖=1

𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖
2 + ∑𝑖𝑖=1

𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖𝑢𝑢𝑖𝑖
∑𝑖𝑖=1
𝑛𝑛 �𝑁𝑁𝑖𝑖𝑖

2 ;

the last equality uses the fact, as in Chapter 3, that the residuals from regressing 
𝑥𝑥1 on ∀ 𝑥𝑥𝑗𝑗≠1 are uncorrelated with �𝑥𝑥1, because it is a linear function of 𝑥𝑥𝑗𝑗≠1.  



CLM (concluded)
Lastly a little simplification yields:

�̂�𝛽1 = 𝛽𝛽1 +
∑𝑖𝑖=1𝑛𝑛 �̂�𝑁𝑖𝑖1𝑢𝑢𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 �̂�𝑁𝑖𝑖12

.

And if the second term above is just a sum of normally distributed random variables, as we have 
assumed it is (because of 𝑢𝑢), the sum is also normally distributed 
◦ (see Appendix B.5 in Wooldridge).  
◦ Since they are functions of the independent variables, �̂�𝑁 are not treated as a random variables.

�𝛽𝛽𝑗𝑗~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝛽𝛽𝑗𝑗,𝑉𝑉𝑁𝑁𝑁𝑁 �𝛽𝛽𝑗𝑗 , where 𝑉𝑉𝑁𝑁𝑁𝑁 �𝛽𝛽𝑗𝑗 =
𝜎𝜎2

𝑆𝑆𝑆𝑆𝑇𝑇𝑗𝑗(1 − 𝑅𝑅𝑗𝑗2)
.



Inference about the CLM
From introductory statistics, this means you can standardize �𝛽𝛽𝑗𝑗 by subtracting its mean and 
dividing by its standard deviation.  

This turns it into a normally distributed random variable (“z”) with mean zero and standard 
deviation 1:

𝑧𝑧 =
�𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗

𝑉𝑉𝑁𝑁𝑁𝑁 �𝛽𝛽𝑗𝑗

1
2

; 𝑧𝑧~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 0,1 .



Testing hypotheses about a single 
parameter
In practice when we perform tests on �𝛽𝛽 estimates, 𝜎𝜎2 is not known and is replaced with its 
sample counterpart.  

This consumes a degree of freedom and requires the empiricist to use the “t” distribution (with 
the remaining 𝑛𝑛 − 𝑘𝑘 − 1 degrees of freedom) instead of “z”.  
◦ For testing whether the coefficient estimate is significantly different from zero, use a t test.

𝑡𝑡𝑛𝑛−𝑘𝑘−1 =
�𝛽𝛽𝑗𝑗 − 0

𝑠𝑠𝑠𝑠(�𝛽𝛽𝑗𝑗)
= �𝛽𝛽𝑗𝑗 − 0

�𝜎𝜎2

𝑆𝑆𝑆𝑆𝑇𝑇𝑗𝑗 1 − 𝑅𝑅𝑗𝑗2

−1
2



Testing hypotheses about a single 
parameter (continued)
This test statistic is based on the common null hypothesis (𝐻𝐻0) that:  
◦ “after controlling for the other explanatory variables, there is no relationship between 𝑥𝑥𝑗𝑗 and 𝑦𝑦”.
◦ Stated in formal notation, it is:

𝐻𝐻0: 𝛽𝛽𝑗𝑗 = 0.

If “t” is large (in absolute value), we have a statistic “far away” from the null hypothesized value, 
which is unlikely to have been generated by an “unlucky” sample
◦ and therefore evidence in support of the alternative hypothesis:
◦ (“after controlling for the other explanatory variables, there is a relationship between 𝑥𝑥𝑗𝑗 and 𝑦𝑦”).
◦ Or,

𝐻𝐻1: 𝛽𝛽𝑗𝑗 ≠ 0.



Testing hypotheses about a single 
parameter (continued)
Naturally you can test hypotheses of the one tail variety, as well, e.g.,

𝐻𝐻0: 𝛽𝛽𝑗𝑗 ≤ 0 with 𝐻𝐻1: 𝛽𝛽𝑗𝑗 > 0.

In either case “far away” (and the decision to reject the null hypothesis or not) depends on 
probability.  

Specifically it depends on the probability density function (pdf) of the sampling distribution 
(𝑡𝑡𝑛𝑛−𝑘𝑘−1), as if the null hypothesis is true.  

It may look like the 𝑡𝑡 distribution on the next slide.



Example of a t distribution:  with p value 
and critical value

t



Testing hypotheses about a single 
parameter (continued)
The center (expected value) of the pdf is 0 if the null hypothesis is true, and values in the tails
are increasingly improbable, 
◦ reflecting the Law of Large Numbers and the rarity with which random samples deviate very far from 

the population mean.  
◦ In the example above, there is only a 0.05 probability of sampling a 𝑡𝑡 value greater than 1.701; this is 

reflected by calculating the area under the distribution in the upper tail of the curve.  
◦ By now this should be ingrained, but it is worth mentioning one more time:  the area in the left (of 

1.701) tail is 0.95, i.e., the probability of sampling 𝑡𝑡 ≤ 1.701 is 0.95.



Testing hypotheses about a single 
parameter (continued)
The reason this example is used is that 0.05 is a commonly used standard for statistical 
significance in published empirical work.

In this case, a t statistic greater than 1.701 would compel the researcher to reject the null 
hypothesis that 𝛽𝛽𝑗𝑗 ≤ 0 and argue that there is a positive relationship between 𝑥𝑥𝑗𝑗 and 𝑦𝑦.
◦ He would be confident that there is only a 0.05 (5%) likelihood that his finding is a Type I Error (rejecting 
𝐻𝐻0 when it is, in fact, true), i.e., 5% is his Confidence Level in the result.*

To satisfy an even greater standard for confidence in your results, an even larger t is necessary, 
◦ e.g., to be 99% or 99.9%, t would have to be over 2.467 and 3.408, respectively.

*This is also sometimes called a “false positive”.



Testing hypotheses about a single 
parameter (concluded)
Values can either be looked up on a “t chart” like the one in the Appendix of the textbook, or 
they can be calculated by software.

The upper tail probability can be calculated in STATA for a t distribution with “n” degrees of 
freedom using the function “ttail”.
◦ Its syntax is:  ttail(n,t), where “t” is the cut-off for the upper tail.

You can also look up the value of “t” for which “p” is the upper tail area using “invttail”.
◦ The syntax is:  invttail(n,p).

Using the estimated t value from a regression to look up the significance level (area in tail(s)) at 
which the null hypothesis can be rejected reveals the p-value for the result.  It tells you the 
smallest probability of Type I Error with which the null hypothesis can be rejected.



Guidelines for discussing economic and 
statistical significance
If an estimate is statistically significant, discuss the magnitude of the coefficient to get an idea of 
its economic or practical importance.

The fact that a coefficient is statistically significant does not necessarily mean it is economically 
or practically significant!

If a variable is statistically and economically important but has the “wrong“ sign, the regression 
model might be misspecified.

If a variable is statistically insignificant at the usual levels (10%, 5%, 1%), one may think of 
dropping it from the regression.



Confidence intervals
A confidence interval can be constructed around the point estimate of �𝛽𝛽𝑗𝑗 using the familiar 
procedure from introductory statistics:

�𝛽𝛽𝑗𝑗 ± 𝑠𝑠𝑠𝑠(�𝛽𝛽𝑗𝑗) ∗ 𝑐𝑐,

where 𝑐𝑐 comes from a t chart (or software) and reflects the desired confidence level and 
appropriate (𝑛𝑛 − 𝑘𝑘 − 1) degrees of freedom.

The two boundaries of the interval tell the reader a range in which the true parameter value, 𝛽𝛽𝑗𝑗, 
will lie—with the specified probability, e.g., 95%.



Confidence intervals (continued)
This result comes from taking the absolute value of the standardized test statistic.  Since the t
distribution is symmetric,

𝑡𝑡 =
�𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗
𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗

→ Pr
�𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗
𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗

≤ −𝑐𝑐𝛼𝛼 = Pr
�𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗
𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗

> 𝑐𝑐𝛼𝛼 =
𝛼𝛼
2

, and

⇔ Pr
�𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗
𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗

> 𝑐𝑐𝛼𝛼 = 2
𝛼𝛼
2

= 𝛼𝛼, where

𝑐𝑐𝛼𝛼 is a constant that reflects the confidence level (specifically 𝛼𝛼 is the probability the interval 
does not contain the parameter of interest).
◦ Lower alpha means a wider (“less precise”) interval.



Confidence intervals (continued)
So:

Pr
�𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗
𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗

≤ 𝑐𝑐𝛼𝛼 = 1 − 𝛼𝛼 , and Pr �𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗 ≤ 𝑐𝑐𝛼𝛼𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗 = 1 − 𝛼𝛼 .



Confidence intervals (concluded)
It follows from the properties of inequality expressions that:

�𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗 = 𝛽𝛽𝑗𝑗 − �𝛽𝛽𝑗𝑗 ≤ 𝑐𝑐𝛼𝛼𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗 → −𝑐𝑐𝛼𝛼𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗 ≤ 𝛽𝛽𝑗𝑗 − �𝛽𝛽𝑗𝑗 ≤ 𝑐𝑐𝛼𝛼𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗 ,

and �𝛽𝛽𝑗𝑗 − 𝑐𝑐𝛼𝛼𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗 ≤ 𝛽𝛽𝑗𝑗 ≤ �𝛽𝛽𝑗𝑗 + 𝑐𝑐𝛼𝛼𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗

The probability that 𝛽𝛽𝑗𝑗 lies in the interval �𝛽𝛽𝑗𝑗 ± 𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗 𝑐𝑐𝛼𝛼 is just (1 − 𝛼𝛼):

Pr �𝛽𝛽𝑗𝑗 − 𝑐𝑐𝛼𝛼𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗 ≤ 𝛽𝛽𝑗𝑗 ≤ �𝛽𝛽𝑗𝑗 + 𝑐𝑐𝛼𝛼𝑠𝑠𝑠𝑠 �𝛽𝛽𝑗𝑗 = 1 − 𝛼𝛼 .



Testing hypotheses about a linear 
combination of parameters
The preceding methods are taught in all introductory courses in statistics, and applying them to 
the CLM should serve mostly as practice.  

Not all introductory courses, however, teach students how to test hypotheses about how 
parameters relate to each other—rather than how they relate to a constant.  These are the kind 
of hypotheses we consider now.

For example we will practice methods for testing hypotheses like the following:
𝐻𝐻0: 𝛽𝛽1 = 𝛽𝛽2 ⇔ 𝛽𝛽1 − 𝛽𝛽2 = 0.



Expected value of a linear combination of 
parameters
The second equality gives some insight about how a test statistic can be constructed.

We’re performing a test on a linear combination of estimates.  
◦ If each of them is normally distributed, again, so is the linear combination.  

The difficulty we now face is finding the standard error of the linear combination of estimates, 
◦ i.e., what is 𝑉𝑉𝑁𝑁𝑁𝑁 �𝛽𝛽1 − �𝛽𝛽2 ?
◦ The point estimate of (𝛽𝛽1 − 𝛽𝛽2) is just the difference in coefficient estimates:  �𝛽𝛽1 − �𝛽𝛽2.  
◦ Once we ascertain the standard error we can perform a t test as before.



Variance of a linear combination of 
parameters
The expected value of the difference is:

𝐸𝐸 �𝛽𝛽1 − �𝛽𝛽2 = 𝐸𝐸 �𝛽𝛽1 − 𝐸𝐸 �𝛽𝛽2 = 𝛽𝛽1 − 𝛽𝛽2, variance is:

𝑉𝑉𝑁𝑁𝑁𝑁 �𝛽𝛽1 − �𝛽𝛽2 = 𝐸𝐸 �𝛽𝛽1 − 𝛽𝛽1 − �𝛽𝛽2 − 𝛽𝛽2

2

= 𝐸𝐸 �𝛽𝛽1 − 𝛽𝛽1
2

+ 𝐸𝐸 �𝛽𝛽2 − 𝛽𝛽2
2
− 𝑖𝐸𝐸 �𝛽𝛽1 − 𝛽𝛽1

�𝛽𝛽2 − 𝛽𝛽2 , or

𝑉𝑉𝑁𝑁𝑁𝑁 �𝛽𝛽1 − �𝛽𝛽2 = 𝑉𝑉𝑁𝑁𝑁𝑁 �𝛽𝛽1 + 𝑉𝑉𝑁𝑁𝑁𝑁 �𝛽𝛽2 − 𝑖𝐶𝐶𝑁𝑁𝐶𝐶 �𝛽𝛽1, �𝛽𝛽2 .



Inference about a linear combination of 
parameters
The (covariance) term is the only one that is not obvious among the regression output.
◦ This quantity can be derived formally; software can calculate it for you, too.*  

But there is another clever way of performing the test—by transforming one of the variables in 
the regression to estimate the quantity �𝛽𝛽1 − �𝛽𝛽2 and its standard error directly.

*to have STATA merely perform the test, the syntax is:

lincom {x1 variable}-{x2 variable}.



Inference about a linear combination of 
parameters (continued)
It is quite easy to do using the “lincom” command followed by the expression you want to test in 
terms of variables’ names.  

Performing this test without relying on pre-programmed “black box” commands means defining 
a new parameter:  “theta”.

𝜃𝜃1 ≡ 𝛽𝛽1 − 𝛽𝛽2, and we can substitute it into the regression model.



Inference about a linear combination of 
parameters (continued)

𝑦𝑦 = 𝛽𝛽0 + 𝜃𝜃1 + 𝛽𝛽2 𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2+. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑢𝑢, which you can rewrite:
𝑦𝑦 = 𝛽𝛽0 + 𝜃𝜃1𝑥𝑥1 + 𝛽𝛽2 𝑥𝑥1 + 𝑥𝑥2 +. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑢𝑢.

Transforming 𝑥𝑥1 and 𝑥𝑥2 into a sum, and regressing 𝑦𝑦 on the sum instead of 𝑥𝑥2 itself, enables you 
to estimate theta and its standard error directly from the regression.

The t test can be performed using the coefficient estimate and standard error from variable 𝑥𝑥1
in this regression.



Testing multiple linear restrictions, the F
test
Continuing with the theme of testing multiple parameter values, consider the possibility of 
testing multiple hypotheses simultaneously.

For example imagine a set of variables that you suspect does not affect 𝑦𝑦 (once you control for 
the other 𝑥𝑥 variables).

One could verify this suspicion by testing the null hypothesis:
𝐻𝐻0: 𝛽𝛽3 = 0;𝛽𝛽4 = 0;𝛽𝛽5 = 0 against 𝐻𝐻1: 𝑁𝑁𝑡𝑡 𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠𝑡𝑡 one is ≠ 0.



Caveat:  joint significance
This is not the same thing as testing 3 hypotheses about single parameters separately!

Those individual t tests would place no restrictions on the other parameters and do not 
constitute a test of the joint hypothesis.



Testing a joint hypothesis with the SSR
The test for this kind of hypothesis is based on the Sum of Squared Residuals (SSR).

Particularly it is based on how the SSR increases when the coefficients in question are restricted
to being zero, i.e., we make exclusion restrictions by estimating the regression without them.

If the unrestricted model, (with 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5) fits significantly better than the restricted model
(without them:  𝛽𝛽3 = 𝛽𝛽4 = 𝛽𝛽5 = 0), then the null hypothesis should be rejected.



Testing a joint hypothesis with the SSR 
(continued)
To make this formal, consider the unrestricted model with (𝑘𝑘 + 1) parameters.

In the restricted model q of them are restricted to zero.
◦ If the exclusions are put at the end of the series, it would look like:

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2+. . . +𝛽𝛽𝑘𝑘−𝑞𝑞𝑥𝑥𝑘𝑘−𝑞𝑞 + 𝑢𝑢.



Testing a joint hypothesis with the SSR 
(continued)
Each residual is normally distributed, and the sum (n terms) of the standardized (�𝑢𝑢𝑖𝑖/𝜎𝜎) squares 
of normally distributed random variables follows a Chi Squared  (𝜒𝜒2) distribution with 
𝑛𝑛 − 𝑘𝑘 − 1 degrees of freedom.

�
𝑖𝑖=1

𝑛𝑛
�𝑢𝑢𝑖𝑖
𝜎𝜎

2

=
𝑆𝑆𝑆𝑆𝑅𝑅
𝜎𝜎2 ~𝜒𝜒𝑛𝑛−𝑘𝑘−1

2 .

When Chi Squared variables are added (subtracted), their degrees of freedom are also added 
(subtracted), i.e.,

𝑆𝑆𝑆𝑆𝑅𝑅𝑁𝑁𝑠𝑠𝑠𝑠𝑡𝑡𝑁𝑁𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑟𝑟
𝜎𝜎2 −

𝑆𝑆𝑆𝑆𝑅𝑅𝑢𝑢𝑛𝑛𝑁𝑁𝑠𝑠𝑠𝑠𝑡𝑡𝑁𝑁𝑖𝑖𝑐𝑐𝑡𝑡𝑠𝑠𝑟𝑟
𝜎𝜎2 ~𝜒𝜒𝑛𝑛−𝑘𝑘−1+𝑞𝑞− 𝑛𝑛−𝑘𝑘−1 =𝑞𝑞

2 .



Testing a joint hypothesis with the SSR 
(continued)
The ratio of two Chi Squared random variables (times the inverted ratio of their degrees of 
freedom) follows an F distribution with numerator and denominator degrees of freedom 
determined by the two Chi Squared statistics.

I.e.,
𝜒𝜒𝑞𝑞

2

𝑞𝑞
𝜒𝜒𝑛𝑛−𝑘𝑘−1

2

𝑛𝑛 − 𝑘𝑘 − 1

~𝐹𝐹 𝑞𝑞,𝑛𝑛 − 𝑘𝑘 − 1 .



Testing a joint hypothesis with the SSR 
(continued)
Since sums of residuals (and differences in sums) follow Chi Squared distributions, the ratio of 
change in SSR to unrestricted SSR can be the basis for an F Test.

𝑆𝑆𝑆𝑆𝑅𝑅𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑅𝑅𝑢𝑢𝑁𝑁
𝑞𝑞

𝑆𝑆𝑆𝑆𝑅𝑅𝑢𝑢𝑁𝑁
𝑛𝑛 − 𝑘𝑘 − 1

~𝐹𝐹 𝑞𝑞,𝑛𝑛 − 𝑘𝑘 − 1 , where

q is called the numerator degrees of freedom and n-k-1 is the denominator degrees of freedom.  

One can calculate F from estimating the restricted and unrestricted models and obtaining the 
SSR figures.



Testing a joint hypothesis with the SSR 
(continued)
With a test statistic in hand, now 
◦ What is the distribution of F? and 
◦ how large the test statistic must be to reject 𝐻𝐻0?  

This can be found using a table like the one in the Appendix or by using software.
◦ If 𝐻𝐻0 is true, the numerator will be approximately zero because the restrictions will not increase SSR 

very much.
◦ But if (𝑆𝑆𝑆𝑆𝑅𝑅𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑅𝑅𝑢𝑢𝑁𝑁) is large, it makes the F statistic large and contradicts the null hypothesis.

STATA can calculate the upper tail (p-value) probability using the Ftail command.
◦ The syntax is:  Ftail(n1,n2,F), where “n1” and “n2” are the numerator and denominator degrees of 

freedom, respectively, and “F” is the test statistic.



Testing a joint hypothesis with the SSR 
(concluded)
To perform the test, merely decide on a confidence level (1 − 𝛼𝛼) and calculate the value of F at 
which the upper tail contains 𝛼𝛼 probability.

If the test statistic is greater than this critical value, reject the null and do not reject it otherwise.  

As with t tests, the p-value indicates the smallest Type I Error probability with which you can 
reject the null hypothesis.



The 𝑅𝑅2 version of the test
Because of the relationship between 𝑅𝑅2 and SSR, the F test can be performed using 𝑅𝑅2 as well.

𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑇𝑇 − 𝑆𝑆𝑆𝑆𝑅𝑅

𝑆𝑆𝑆𝑆𝑇𝑇
= 1 −

𝑆𝑆𝑆𝑆𝑅𝑅
𝑆𝑆𝑆𝑆𝑇𝑇

⇔ 𝑆𝑆𝑆𝑆𝑅𝑅 = 𝑆𝑆𝑆𝑆𝑇𝑇 1 − 𝑅𝑅2 .

F can be rewritten:
𝑆𝑆𝑆𝑆𝑇𝑇 1 − 𝑅𝑅𝑁𝑁2 − 𝑆𝑆𝑆𝑆𝑇𝑇 1 − 𝑅𝑅𝑢𝑢𝑁𝑁2

𝑞𝑞
𝑆𝑆𝑆𝑆𝑇𝑇 1 − 𝑅𝑅𝑢𝑢𝑁𝑁2

𝑛𝑛 − 𝑘𝑘 − 1

~𝐹𝐹 𝑞𝑞,𝑛𝑛 − 𝑘𝑘 − 1



The 𝑅𝑅2 version of the test (continued)

simplifying yields,𝐹𝐹 =

1 − 𝑅𝑅𝑁𝑁2 − 1 − 𝑅𝑅𝑢𝑢𝑁𝑁2

𝑞𝑞
1 − 𝑅𝑅𝑢𝑢𝑁𝑁2

𝑛𝑛 − 𝑘𝑘 − 1

=

𝑅𝑅𝑢𝑢𝑁𝑁2 − 𝑅𝑅𝑁𝑁2
𝑞𝑞

1 − 𝑅𝑅𝑢𝑢𝑁𝑁2

𝑛𝑛 − 𝑘𝑘 − 1

.

A special case of the F test ascertains whether the set of explanatory variables, collectively, 
explains 𝑦𝑦 significantly.
◦ This is done by choosing 𝑞𝑞 = 𝑘𝑘.  Then F becomes:

𝐹𝐹 =

𝑅𝑅𝑢𝑢𝑁𝑁2

𝑞𝑞
1 − 𝑅𝑅𝑢𝑢𝑁𝑁2

𝑛𝑛 − 𝑘𝑘 − 1

.

This tests the overall significance of the regression.



Even more complicated hypothesis tests
Finally consider testing exclusion restrictions and an individual parameter value simultaneously 
with an F test.
◦ The textbook uses an example in which all the coefficients except one are null hypothesized to be zero, 

and the remaining one is hypothesized to equal 1.
◦ This can be performed by transforming the dependent variable, subtracting the variable with the 

coefficient of 1.  The restricted model is:
𝑦𝑦 = 𝛽𝛽0 + 1𝑥𝑥1 + 𝑢𝑢, and the restricted 𝑆𝑆𝑆𝑆𝑅𝑅 comes from,

𝜋𝜋 = 𝛽𝛽0 + 𝑢𝑢; 𝜋𝜋 ≡ 𝑦𝑦 − 𝑥𝑥1.

Regressing only on a constant will just estimate the mean of the transformed LHS variable.



Reporting regression results
Always report the OLS coefficients.
◦ For the key variables, the author should offer interpretation, i.e., explain the estimated effects in the 

context of units of measurement, e.g., elasticity, semi-elasticity.
◦ And the practical significance of the results should be discussed.

Depending on the audience, report the standard errors (other economists who know how to 
calculate t statistics readily) or t statistics (other academics who don’t use econometrics as 
fluently).
◦ Standard errors are more reliable generally, especially in instances in which the null hypothesized value 

is non-zero.



Reporting regression results (continued)
Report 𝑅𝑅2 as a measure of goodness of fit.
◦ It also helps calculate F statistics for testing exclusion restrictions.

Although the results in the text are frequently reported in equation form for pedagogical 
purposes, most regression results in published papers are not.

Instead they are reported on one or several tables, in which the samples, sample sizes, 𝑅𝑅2, and 
sets of control variables are noted in each column (for each specification).



Regression results tables
Tables should be “self-contained”, i.e., with a title describing the model estimated, the 
dependent variable, intuitive (!) names for the explanatory variables in the first column, and a 
caption explaining any symbols, jargon, estimation methods, and anything else that could 
confuse the reader.
◦ Many veteran readers of empirical work will skim a paper merely by studying the tables, and it is 

desirable that anyone who does so be able to get the rudiments of your findings.

An example from a paper I have been working on (studying the effect of paid sick leave 
mandates on labor market outcomes) is shown on the next slide.



Regression results tables (continued)
Effect on Log Industry Employment

1 2 3 4
Mandate Implemented (β1) 0.2912 0.2926 -0.0069 -0.0070

(.1904) (.1903) (.0106) (.0106)
Implied % Change Employment - - - -

Mandate*Unaffected (β2) -0.2136 -0.2166 0.0306** 0.0305**
(.1779) (.1776) (.0142) (.0142)

Mandate, Unaffected Industry (β1+β2) 0.0776 0.0760 0.0237*** 0.0235***
(.0564) (.056) (.006) (.006)

Implied % Change Employment - - 2.40% 2.37%
Observations 2,778,552 2,778,552 2,745,474 2,745,474
Panels 33,078 33,078 33,078 33,078
Year, Calendar Month Effects Yes Yes Yes Yes
Controls Population All Population All

Time Trends
Industry, 

Treatment 
& Control

Industry, 
Treatment 
& Control

Industry, 
County

Industry, 
County

Dynamic Treatment Effect No No No No
Estimates of model (2) using industry data.  The panels in this model are (2 digit) industry, 
county combinations.  Again standard errors are cluster robust around each panel (county-
industry).  Table 6a shows the employment effect estimates and 6b shows the wage effect 
estimates.  Summary statistics for the industry characteristics are on a table in the appendix.  
The emphasis in these tables is on the source of employment and wage gains:  the “unaffected” 
industries.  This supports the hypothesis that the law’s positive health externalities drive the 
county results and offset the costs to the firms who are bound by it.
* Significant at α=0.1
** Significant at α=0.05
*** Significant at α=0.01

Table 1:  Mandates' Effects on Individual Industry Employment



Conclusion
As necessary, you should be able to test various forms of hypotheses about regression 
estimates:
◦ Value of a single parameter,
◦ Value of a sum of (difference between) multiple parameters (linear combination),
◦ Joint equality of multiple parameters,
◦ Significance of overall regression model.

Performing these tests with technical accuracy and being able to present the results of a 
regression is vital to an empiricist’s credibility.

This lecture on inference is based on the classical linear model assumptions.
◦ Next we will consider what happens when the normality assumption is lifted.
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