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Introduction
There is not a lot of new material in this chapter, unless one wants to get into proofs of the 
Central Limit Theorem, probability limits, and convergence in distribution—which I prefer not to.  

Instead my emphasis is on explaining why some of the Assumptions in the CLM are not so 
restrictive and that inference according to Chapter 4 methods is still possible under weaker 
assumptions about the distribution of the error term.



Outline
Consistency.

Asymptotic Normality and Large Sample Inference.

Asymptotic Efficiency of OLS.



Consistency
(Consistent Estimator) Defined:  “An estimator that converges in probability to the population 
parameter as the sample size grows without bound.”

This is stated formally by expressing the probability that the estimator falls outside an interval, 𝜀𝜀, 
and that the probability approaches zero as the sample size increases, for any 𝜀𝜀.

Convergence in probability states that:
Pr 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 𝜀𝜀 = 0 as 𝑛𝑛 → ∞.



Consistency (continued)
If one can collect an arbitrarily large amount of observations, he ought to be able to obtain an 
estimate that gets closer and closer to the true parameter value.

If this is not the case, the estimator is inconsistent and not of much use.

Fortunately, under Assumptions MLR.1 through MLR. 4, the OLS estimators (𝛽̂𝛽0 through 𝛽̂𝛽𝑘𝑘) are 
consistent estimators of their corresponding parameters.



Consistency (continued)
One can show this fairly easily for the simple regression model, using the estimator and the 
definition of the model:

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖, and

𝛽̂𝛽1 =
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − �𝑦𝑦)

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 2 =
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥)𝑦𝑦𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 2 .

So, 

𝛽̂𝛽1 =
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥)(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖)

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 2 = 𝛽𝛽1 +
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥)𝑢𝑢𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 2 .



Consistency (continued)
This expression should be familiar from deriving the unbiasedness of OLS.

To show the consistency 𝛽̂𝛽1, make a small modification, dividing the numerator 
and denominator of the second term by the sample size.

𝛽̂𝛽1 = 𝛽𝛽1 +
𝑛𝑛−1 ∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥)𝑢𝑢𝑖𝑖
𝑛𝑛−1 ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 2 .

Taking the probability limit (“plim”) of this, as 𝑛𝑛 → ∞, you find that the 
numerator converges to the covariance of 𝑥𝑥1 and 𝑢𝑢, and the denominator 
converges to the variance of 𝑥𝑥1.



Consistency (concluded)
And the properties of probability limits state that the plim of a ratio of two estimators equals the 
ratio of their plims:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝛽̂𝛽1 = 𝛽𝛽1 +
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛−1 ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 𝑢𝑢𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛−1 ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 2 = 𝛽𝛽1 +

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥1, 𝑢𝑢)
𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥1

.

MLR.4 (SLR.4) states that 𝑥𝑥1 and 𝑢𝑢 are mean independent, which implies that their covariance is 
zero.  So,

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝛽̂𝛽1 = 𝛽𝛽1, and

OLS is consistent as long as the error term is not correlated with the “x” variable(s).



OLS is consistent under weaker 
assumptions
This is the weaker version of the fourth Assumption, MLR.4’, which states:

𝐸𝐸 𝑢𝑢 = 0 and 𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥𝑗𝑗, 𝑢𝑢 = 0 ∀ 𝑗𝑗.

It is weaker because assuming merely that they are uncorrelated linearly does not rule out 
higher order relationships between 𝑥𝑥𝑗𝑗 and 𝑢𝑢.
◦ The latter can make OLS biased (but still consistent), so if unbiasedness and consistency are both

desired, you still need (the stronger) Assumption MLR.4.



Mis-specified models are still 
inconsistent
Inconsistency can be shown in a manner very similar to biasedness in the model with 2 
explanatory variables.

If one estimates ( �𝛽𝛽1) a regression that excludes 𝑥𝑥2, such that:

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + 𝑣𝑣𝑖𝑖 and �𝛽𝛽1 =
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 𝑦𝑦𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 2 ,

⇔ �𝛽𝛽1 =
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + 𝑣𝑣𝑖𝑖

∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 2 = 𝛽𝛽1 + 𝛽𝛽2
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 𝑥𝑥𝑖𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖 − 𝑥̅𝑥 2 ,



Mis-specified models are still 
inconsistent (continued)

the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of the estimator is 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝛽𝛽1 = 𝛽𝛽1 + 𝛽𝛽2𝛿𝛿1; 𝛿𝛿1 ≡
𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥1, 𝑥𝑥2
𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥1

.

The second term is the inconsistency, and this estimator converges closer to the inaccurate value 
(𝛽𝛽1 + 𝛽𝛽2𝛿𝛿1) as the sample size grows.

In the 𝑘𝑘 > 2 case, this result is general to all of the explanatory variables; none of the estimators 
is consistent if the model is mis-specified like above.



Asymptotic normality and large sample 
inference
This is the most consequential lesson from Chapter 5.

Knowing that an estimator is consistent is satisfying, but it doesn’t imply anything about the 
distribution of the estimator, which is necessary for inference.
◦ The OLS estimators are normally distributed if the errors are assumed to be (with constant variance 𝜎𝜎2), 

as well as the values of (𝑦𝑦|𝑥𝑥1. . . 𝑥𝑥𝑘𝑘).
◦ But what if the errors are not normally distributed?  

◦ Consequently neither are the values of y.

◦ As the text points out, there are numerous such examples, e.g., when 𝑦𝑦 is bound by a range (like 0-100), 
or in which it’s skewed (example 3.5), and the normality assumption is unrealistic.



Asymptotic normality and large sample 
inference (continued)
However inference is based on the estimators have a constant mean (𝛽̂𝛽𝑗𝑗) and variance.  When 
they are standardized, they have mean zero and standard deviation 1 (note:  we maintain the 
homoskedasticity assumption).  

Crucially, as the sample size approaches infinity, the distribution of the standardized estimator 
converges to standard normal.  

This property applies to all averages from random samples, and is known as the Central Limit 
Theorem (CLT).  Its implication is that:

𝛽̂𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗
𝑠𝑠𝑠𝑠 𝛽̂𝛽𝑗𝑗

→
𝑑𝑑
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 0,1 ∀ 𝑗𝑗; →

𝑑𝑑
means 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.



Asymptotic normality and large sample 
inference (continued)
Another way of saying it is that the distribution of the OLS estimator is asymptotically normal.

One more feature of the OLS asymptotics is that the estimator, �𝜎𝜎2, consistently estimates 𝜎𝜎2, 
the population error variance, so it no longer matters that the parameter is replaced by its 
consistent estimator.
◦ Nor is it necessary to make a distinction between the standard normal and the 𝑡𝑡 distribution for 

inference—because in large samples the 𝑡𝑡 distribution converges to standard normal anyway.
◦ For the sake of precision, however, 𝑡𝑡𝑛𝑛−𝑘𝑘−1 is the exact distribution for the estimators.



Asymptotic normality and large sample 
inference (concluded)
Assumption MLR.6 has been replaced with a much weaker assumption—merely that the error 
term has finite and homoskedastic variance.

As long as the sample size is “large”, inference can be conducted the same way as under 
Assumption MLR.6, however.
◦ How many observations constitutes “large” is an open question.
◦ The requisite in some cases can be as low as 30 for the CLT to provide a good approximation, but if the 

errors are highly skewed (“non-normal”) or if there are many regressors in the model (𝑘𝑘 “eats up” a lot 
of degrees of freedom) reliable inference with 30 observations is overly optimistic.



Precision of the OLS estimates
Finally we investigate “how fast” the standard error shrinks as the sample size increases.  The 
variance of 𝛽̂𝛽𝑗𝑗 (square root is the standard error) is:

�𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽𝑗𝑗 =
�𝜎𝜎2

𝑆𝑆𝑆𝑆𝑇𝑇𝑗𝑗(1 − 𝑅𝑅𝑗𝑗2)
=

�𝜎𝜎2

𝑛𝑛𝑠𝑠𝑗𝑗2(1 − 𝑅𝑅𝑗𝑗2)
, where

the total sum of squares of 𝑥𝑥𝑗𝑗(𝑆𝑆𝑆𝑆𝑇𝑇𝑗𝑗) can be replaced according to the definition of 𝑥𝑥𝑗𝑗’s sample 
variance (𝑠𝑠𝑗𝑗2):

𝑠𝑠𝑗𝑗2 =
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑗𝑗

2

𝑛𝑛
=
𝑆𝑆𝑆𝑆𝑇𝑇𝑗𝑗
𝑛𝑛

.



Precision of the OLS estimates 
(continued)
As 𝑛𝑛 gets large, these sample statistics each approach their population values.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝜎𝜎2 = 𝜎𝜎2, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑗𝑗2 = 𝜎𝜎𝑗𝑗2, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑅𝑅𝑗𝑗2 = 𝜌𝜌𝑗𝑗2, and

none of these parameters depends on sample size.  Variance gets smaller at the rate (1
𝑛𝑛

) because 
of the explicit “n” term in the denominator.  I.e.,

�𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽𝑗𝑗 =
𝜎𝜎2

𝑛𝑛𝜎𝜎𝑗𝑗2(1 − 𝜌𝜌𝑗𝑗2)
;
𝜕𝜕 �𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽𝑗𝑗

𝜕𝜕𝜕𝜕
= −

�𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽𝑗𝑗
𝑛𝑛

.



Precision of the OLS estimated 
(concluded)
The asymptotic standard error is just the square root and it get smaller at the rate of (𝑛𝑛−

1
2).

𝑠𝑠𝑠𝑠 𝛽̂𝛽𝑗𝑗 =
1
𝑛𝑛

𝜎𝜎

𝜎𝜎𝑗𝑗 1 − 𝜌𝜌𝑗𝑗2
1
2

.

F tests for exclusion restrictions, as well as t tests, can be conducted—for large samples—as you 
learned in Chapter 4 under the assumption of normally distributed errors.



𝛽𝛽 has lots of consistent estimators
The OLS estimator, 𝛽̂𝛽, also has the lowest asymptotic variance among estimators that are linear 
in parameters and rely on functions of 𝑥𝑥, e.g., 𝑔𝑔(𝑥𝑥).

An estimator that uses an alternative to 𝑔𝑔 𝑥𝑥 = 𝑥𝑥 can be called �𝛽𝛽1, and has the form:

�𝛽𝛽1 =
∑𝑖𝑖=1𝑛𝑛 𝑧𝑧𝑖𝑖 − 𝑧𝑧 𝑦𝑦𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑧𝑧𝑖𝑖 − ̅𝑧𝑧 𝑥𝑥𝑖𝑖

; 𝑧𝑧𝑖𝑖 ≡ 𝑔𝑔 𝑥𝑥𝑖𝑖 ; 𝑔𝑔 ≢ 𝑓𝑓 𝑥𝑥 = 𝑥𝑥.

As long as 𝑧𝑧 and 𝑥𝑥 are correlated, this estimator converges in probability to the true value of 𝛽𝛽1, 
i.e., it is consistent.



𝛽𝛽 has lots of consistent estimators 
(continued)
Depending on what kind of non-linear function “g” is, this can fail because correlation only 
measures linear relationships.

And since 𝑥𝑥 and 𝑢𝑢 are mean independent,
𝐸𝐸 𝑢𝑢 𝑥𝑥1 = 𝐸𝐸 𝑢𝑢 𝑔𝑔 𝑥𝑥 = 𝐸𝐸 𝑢𝑢 𝑧𝑧 = 0; so are 𝑢𝑢 and 𝑧𝑧.

�𝛽𝛽1 = 𝛽𝛽1 +
∑𝑖𝑖=1𝑛𝑛 𝑧𝑧𝑖𝑖 − 𝑧𝑧 𝑢𝑢𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑧𝑧𝑖𝑖 − ̅𝑧𝑧 𝑥𝑥𝑖𝑖

; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝛽𝛽1 = 𝛽𝛽1 +
𝐶𝐶𝐶𝐶𝐶𝐶(𝑧𝑧, 𝑢𝑢)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑧𝑧, 𝑥𝑥)

= 𝛽𝛽1.



Asymptotic efficiency of OLS
But the variance of �𝛽𝛽1 is no less than the variance of 𝛽̂𝛽1.

𝑉𝑉𝑉𝑉𝑉𝑉 �𝛽𝛽1 = 𝐸𝐸 �𝛽𝛽1 − 𝛽𝛽1
2 = 𝐸𝐸

∑𝑖𝑖=1𝑛𝑛 𝑧𝑧𝑖𝑖 − 𝑧𝑧 𝑢𝑢𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 𝑧𝑧𝑖𝑖 − ̅𝑧𝑧 𝑥𝑥𝑖𝑖

2

=
𝜎𝜎2𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧)
𝐶𝐶𝐶𝐶𝐶𝐶 𝑧𝑧, 𝑥𝑥 2 , since

only the “own” products show up in the numerator.  And,

𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 =
𝜎𝜎2

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥)
, as before.



Asymptotic efficiency of OLS (continued)
So in order for 𝑉𝑉𝑉𝑉𝑉𝑉 𝛽̂𝛽1 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉 �𝛽𝛽1 ,

𝜎𝜎2

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥)
≤

𝜎𝜎2𝑉𝑉𝑉𝑉𝑉𝑉 𝑧𝑧
𝐶𝐶𝐶𝐶𝐶𝐶 𝑧𝑧, 𝑥𝑥 2 ⇔ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑧𝑧, 𝑥𝑥 2 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥 𝑉𝑉𝑉𝑉𝑉𝑉 𝑧𝑧 .

This property is satisfied by the Cauchy-Schwartz Inequality, which states that there cannot be 
more covariance between two variables than there is overall variance in them.

So the OLS estimator, 𝛽̂𝛽1, has a smaller variance than any other estimator with the same form:
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝛽̂𝛽1 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �𝛽𝛽1 ; 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 denotes asymptotic variance.



Conclusion
According to the asymptotic properties of the OLS estimator:
◦ OLS is consistent,
◦ The estimator converges in distribution to standard normal,
◦ Inference can be performed based on the asymptotic convergence to the standard normal, and
◦ OLS is the most efficient among many consistent estimators of 𝛽𝛽.



A non-normal error term

. reg y x

. gen y=2+x+u

. generate u = rgamma(1,2)

(obs 10000)
. drawnorm x, n(10000) means(12) sds(2) clear

. clear

The error term is definitely not normally 
distributed.

As the histogram (right) shows. 0
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Bootstrapping
To reveal the distribution of 𝛽̂𝛽1 in the regression, 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝑢𝑢, I resample my 10,000 
observations many (2000) times.
◦ This would take a long time, were it not for the software.

Stata code, for 𝑛𝑛 = 10:

bootstrap, reps(2000) size(10) saving(U:\ECON 360 - Spring 2015\BS 10.dta, every(1) replace) : reg y x



Normality?
You can judge whether it looks like the normal 
distribution.

But a normal distribution is supposed to have 0 
skewness (symmetry) and a kurtosis of 3.
◦ This one has 0.25 (right) skewness and 6.746 kurtosis.

99%     2.093876       4.149807       Kurtosis       6.746221
95%     1.634268       2.966994       Skewness       .2467498
90%     1.459825       2.522474       Variance       .1585365
75%     1.201218       2.497071
                        Largest       Std. Dev.      .3981664
50%     .9984144                      Mean           .9962621

25%     .7741854      -.5366573       Sum of Wgt.        2000
10%     .5267513      -.7529542       Obs                2000
 5%      .375233      -.7887098
 1%    -.0410598      -.9976056
      Percentiles      Smallest
                                                             
                            _b[x]

. summ _b_x, detail
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Histogram of 2000 estimates (10 obs. each) of �𝛽𝛽1.



Non-Normality
The statistical test for whether the distribution of beta hats is Normal, called the Jarque-Bera
statistic, rejects the null that the distribution is Normal.
◦ Code is:  sktest _b_x
◦ Similar to a joint hypothesis with 2 restrictions.  𝐻𝐻0: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0 and 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 3.
◦ In this case, the p value is <0.0001.



Would a bigger sample size fail to reject 
𝐻𝐻0?  𝑛𝑛 = 20
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_b[x]99%     1.599728       2.046466       Kurtosis       3.905129

95%     1.377411       1.837642       Skewness       .0079499
90%     1.279575       1.784783       Variance       .0567568
75%     1.133664       1.754412
                        Largest       Std. Dev.      .2382368
50%     .9921745                      Mean           .9891276

25%     .8423931       .1282413       Sum of Wgt.        2000
10%     .6945582       .1131481       Obs                2000
 5%     .6183816       .1094247
 1%     .3718964      -.0062484
      Percentiles      Smallest
                                                             
                            _b[x]

. summ _b_x, detail

The skewness is mostly gone, but the distribution is still too “peaked” to be Normal:  p value on the J-B 
statistic is still <0.0001.



𝑛𝑛 = 50?

The skewness comes back a little, but the kurtosis is coming down now:  p value on the J-B statistic is up 
to <0.0005.
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_b[x]

99%     1.374213       1.551746       Kurtosis       3.348677
95%     1.240575       1.548912       Skewness       .1596157
90%     1.181844       1.509088       Variance       .0216934
75%     1.090446       1.502628
                        Largest       Std. Dev.      .1472866
50%     .9992069                      Mean           .9980457

25%     .8994239       .5639632       Sum of Wgt.        2000
10%     .8089489       .5615669       Obs                2000
 5%     .7648403       .5408446
 1%     .6642559       .4981143
      Percentiles      Smallest
                                                             
                            _b[x]

. summ _b_x, detail



𝑛𝑛 = 100?

        _b_x     2.0e+03   0.2325         0.0388         5.67         0.0586
                                                                             
    Variable      Obs   Pr(Skewness)   Pr(Kurtosis)  adj chi2(2)    Prob>chi2
                                                                 joint       
                    Skewness/Kurtosis tests for Normality

0
1

2
3

4
D

en
si

ty

.6 .8 1 1.2 1.4
_b[x]99%     1.235443       1.307498       Kurtosis       3.241735

95%      1.16099       1.300377       Skewness      -.0652147
90%     1.127472       1.295925       Variance       .0098121
75%     1.066902        1.29039
                        Largest       Std. Dev.      .0990559
50%     .9993333                      Mean             1.0007

25%     .9362201       .6903498       Sum of Wgt.        2000
10%     .8760604       .6756338       Obs                2000
 5%     .8333735       .6678689
 1%     .7633944       .5340427
      Percentiles      Smallest
                                                             
                            _b[x]

. summ _b_x, detail

p>0.05; first 
“fail to reject”!



𝑛𝑛 = 250? Normality far from rejected.

        _b_x     2.0e+03   0.6915         0.1817         1.94         0.3791
                                                                             
    Variable      Obs   Pr(Skewness)   Pr(Kurtosis)  adj chi2(2)    Prob>chi2
                                                                 joint       
                    Skewness/Kurtosis tests for Normality

. sktest _b_x

99%      1.15125       1.215675       Kurtosis        3.14645
95%     1.103124       1.210835       Skewness       .0216586
90%     1.080251       1.191585       Variance       .0040495
75%       1.0383       1.190229
                        Largest       Std. Dev.      .0636356
50%      .997361                      Mean           .9972047

25%     .9550751       .8113453       Sum of Wgt.        2000
10%      .917204        .799898       Obs                2000
 5%     .8956159       .7786757
 1%     .8413554       .7718233
      Percentiles      Smallest
                                                             
                            _b[x]

. summ _b_x, detail
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That’s asymptotic normality
And I only had to run 10,000 regressions to show it! 
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