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Introduction 
 Estimation (Ch. 3) and inference (Ch. 4) are the 2 fundamental skills one must perform when 
using regression analysis. 

 This chapter adds a few embellishments to OLS estimation and inference and reveals that it is 
not very limited by being linear in parameters. 
◦ Sometimes this suggests that OLS is limited to estimating constant effects, which is emphatically not 

true. 
◦ Here we examine cases in which the form of the relationship between x and y is more exotic, e.g., 

quadratic shaped or dependent on the value of another regressor. 

 It also critically examines the R squared statistic and its usefulness for specifying the model. 

 Finally it extends inference to the predicted (“fitted”) values of y that come from the estimates. 



Outline 
 Effects of Data Scaling on OLS Statistics. 

 More on Functional Form: 
◦ Logarithmic, 
◦ Quadratics, 
◦ Interactions. 

 More on Goodness-of-Fit and Selection of Regressors. 

 Prediction and Residual Analysis. 



Effects of data scaling on OLS statistics 
 Consider the following regression model. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽0 + 𝛽𝛽1𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽𝛽2𝑝𝑝𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙 + 𝛽𝛽3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙 + 𝑢𝑢, 

 in which the unit of observation is U.S. Cities in 1982, and the variables are defined: 
crimes:  number of crimes in city “i” in 1982, 
pop:  city population level, 
pcinc:  per capita income, 
llawexpc:  law enforcement spending, $ per capita. 



Data scaling (continued) 
 2 of the coefficients (and their standard 
errors, too) are very small in magnitude, 
yet they are also both statistically 
significant. 
◦ Also check out the positive estimate on log 

of law enforcement expenditure! 

 But the main thing is the unpleasantly 
small scale of the coefficients on 
population and per capita income. 
◦ The former is so small STATA expresses it in 

scientific notation, and if you rounded the 
latter to 3 digits beyond the decimal, it 
wouldn’t even round to |0.001|. 

  

Dependent Variable:  
lcrimes 

𝜷𝜷�𝒋𝒋 Std. Err. t P value 

pop 2.48e-06 2.05e-07 12.11 0.000 
pcinc -.0001009 .0000445 -2.27 0.029 
llawexpc .3733494 .2081494 1.79 0.080 
Constant 7.580081 1.44403 5.25 0.000 

N=46; 𝑅𝑅2=0.8127 

The estimates of the model using OLS and 46 cities 
(above). 



Data scaling (continued) 
 Of course it isn’t surprising.  Increasing population by a single person should not make a big 
difference on the crime rate; nor should increasing the average income by $1.   
◦ That’s why the marginal effects are so small in magnitude. 
◦ They are still highly useful for explaining crime; they just have too small a scale. 

 This is easily remedied without disrupting any of the statistical inference or the integrity of the 
regression.  Merely change the units of measure to make the scale of the coefficients 
appropriately large. 
◦ In this instance, it is convenient to change the scale on both “x” variables by expressing population in 

100s of 1000s and per capita income in $1000s. 
◦ This is equivalent to modifying the regression model as follows (next slide). 



Data scaling (continued) 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1

𝑙𝑙1
100000

+ 𝛽𝛽2
𝑙𝑙2

1000
+ 𝛽𝛽3𝑙𝑙3 + 𝑢𝑢. 

 OLS should now produce coefficients on these variables that are 100,000 and 
1000 times as large, but with identical 𝑡𝑡 statistics, 𝑅𝑅2, and residual variance. 
◦ Derivation. 

 The estimates using the scaled regressors is on the table on the next slide. 



Data scaling (concluded) 
 The coefficient estimates and standard 
errors now have much more palatable 
scales, but notably different 
interpretations. 

 They represent, respectively, the effects of 
increasing population by 100,000 and of 
increasing per capita income by $1000. 

 The 𝑡𝑡 statistics don’t change because, for 
each variable, the interpretations of 𝛽𝛽, �̂�𝛽, 
and the standard error have all been scaled 
by the same constant, and this constant, 
e.g., 1000, just cancels out when 
computing the 𝑡𝑡 statistic. 

Dependent Variable:  
lcrimes 

𝜷𝜷�𝒋𝒋 Std. Err. t P value 

Pop (100,000s) .248315 .0205103 12.11 0.000 
Pcinc ($1000s) -.100899 .0445085 -2.27 0.029 
llawexpc .3733494 .2081494 1.79 0.080 
Constant 7.580081 1.44403 5.25 0.000 

N=46; 𝑅𝑅2=0.8127 



Standardized coefficients 
 Some regressors have units of measure that are inherently vague or otherwise hard to interpret, 
such as scores on a standardized test like the SAT or a credit score. 

 For these variables, interpreting the effect (on 𝑦𝑦) of a one unit increase is non-obvious. 
◦ It is easier to think about the effect of moving one standard deviation within the distribution instead. 

 To achieve this interpretation for the regression, simply perform OLS on standardized variables, 
i.e.,  

𝑦𝑦 − 𝑦𝑦�
𝜎𝜎�𝑦𝑦

= 𝛽𝛽1
𝑙𝑙1 − �̅�𝑙1
𝜎𝜎�1

+ 𝛽𝛽2
𝑙𝑙2 − �̅�𝑙2
𝜎𝜎�2

+. . . +𝛽𝛽𝑘𝑘
𝑙𝑙𝑘𝑘 − �̅�𝑙𝑘𝑘
𝜎𝜎�𝑘𝑘

+ 𝑢𝑢, where 

𝜎𝜎� is the sample standard deviation of the variable. 



Standardized coefficients (continued) 
 But in order to preserve the equality of the model, you have to divide the RHS by the standard 
deviation of 𝑦𝑦 and balance each term out by multiplying by standard deviation (𝜎𝜎�𝑥𝑥): 

𝑦𝑦 − 𝑦𝑦�
𝜎𝜎�𝑦𝑦

=
𝜎𝜎�1
𝜎𝜎�𝑦𝑦
𝛽𝛽1

𝑙𝑙1 − �̅�𝑙1
𝜎𝜎�1

+
𝜎𝜎�2
𝜎𝜎�𝑦𝑦
𝛽𝛽2

𝑙𝑙2 − �̅�𝑙2
𝜎𝜎�2

+. . . +
𝜎𝜎�𝑘𝑘
𝜎𝜎�𝑦𝑦
𝛽𝛽𝑘𝑘

𝑙𝑙𝑘𝑘 − �̅�𝑙𝑘𝑘
𝜎𝜎�𝑘𝑘

+
𝑢𝑢
𝜎𝜎�𝑦𝑦

. 

 This changes the interpretation of the coefficients.  The estimate output for standardized 𝑙𝑙1 will 
now contain: 

𝜎𝜎�1
𝜎𝜎�𝑦𝑦
�̂�𝛽1 

 all as one quantity. 



Standardized coefficients (continued) 
 The Wooldridge book denotes this, 𝑏𝑏�1.  So to estimate standardized coefficients, OLS estimates 

𝑧𝑧𝑦𝑦 = 𝑏𝑏�1
𝑙𝑙1 − �̅�𝑙1
𝜎𝜎�1

+ 𝑏𝑏�2
𝑙𝑙2 − �̅�𝑙2
𝜎𝜎�2

+. . . +𝑏𝑏�𝑘𝑘
𝑙𝑙𝑘𝑘 − �̅�𝑙𝑘𝑘
𝜎𝜎�𝑘𝑘

+
𝑢𝑢
𝜎𝜎�𝑦𝑦

, 

 and the effect of increasing the 𝑗𝑗𝑡𝑡𝑡 regressor by one standard deviation is 𝑏𝑏�𝑗𝑗 standard 
deviations. 

 So if 𝑙𝑙1 is an individual’s (in the sample) credit score, the regression using standardized (“beta”) 
coefficients estimates the effect of moving one standard deviation up in the distribution of 
credit scores. 



Standardized coefficients (concluded) 
 STATA can estimate standardized coefficients really easily using the same syntax as a normal 
regression—and without actually transforming all the variables using  

 egen [newvar_z]=sd(oldvar), mean(0) std(1). 

 The syntax for doing it in the regression is: 

 reg [depvar] {indvars . . . }, beta. 



Logarithmic functional forms 
 We discussed models with a (natural) logarithmically transformed variable in the simple 
regression chapter.  So this should serve as a reminder. 

 The coefficient in a regression with a log-transformed 𝑦𝑦 variable should be interpreted as the 
percentage change in 𝑦𝑦 for a 1 unit increase in 𝑙𝑙. 

 This is an approximation, though, that is only really valid for “small” changes in 𝑙𝑙. 

 
𝜕𝜕ln(𝑦𝑦)
𝜕𝜕𝑙𝑙𝑗𝑗

=
𝜕𝜕ln(𝑦𝑦)
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑙𝑙𝑗𝑗

=
1
𝑦𝑦
𝜕𝜕𝑦𝑦
𝜕𝜕𝑙𝑙𝑗𝑗

= �̂�𝛽𝑗𝑗;
∆𝑦𝑦
𝑦𝑦
≈ �̂�𝛽𝑗𝑗∆𝑙𝑙𝑗𝑗 . 

 
∆𝑙𝑙𝑗𝑗 = 1 → �̂�𝛽𝑗𝑗 ≈ %∆𝑦𝑦. 



Logarithmic functional forms (continued) 
 The approximation gets less accurate the larger the change in 𝑙𝑙𝑗𝑗 is.  To be exact about 
interpreting a one unit increase in 𝑙𝑙𝑗𝑗, consider the definition of % change: 

1  %∆𝑦𝑦 = 100 ∗
𝑦𝑦 𝑙𝑙𝑗𝑗1 − 𝑦𝑦 𝑙𝑙𝑗𝑗0

𝑦𝑦 𝑙𝑙𝑗𝑗0
⇔ 1 +

%∆𝑦𝑦
100

=
𝑦𝑦(𝑙𝑙𝑗𝑗1)
𝑦𝑦 𝑙𝑙𝑗𝑗0

. 

 Imagine this change was the result of differencing the regression model (with 𝑦𝑦 in logs) by 
changing 𝑙𝑙𝑗𝑗 one unit (∆𝑙𝑙𝑗𝑗 = 1): 

2  ln 𝑦𝑦 𝑙𝑙𝑗𝑗1|𝑙𝑙≠𝑗𝑗 − ln 𝑦𝑦 𝑙𝑙𝑗𝑗0|𝑙𝑙≠𝑗𝑗 = �̂�𝛽𝑗𝑗 ∗ 1. 



Logarithmic functional forms (continued) 
 Take the log of (1):  

1 → ln 1 +
%∆𝑦𝑦
100

= ln 𝑦𝑦 𝑙𝑙𝑗𝑗1|𝑙𝑙≠𝑗𝑗 − ln 𝑦𝑦 𝑙𝑙𝑗𝑗0|𝑙𝑙≠𝑗𝑗 = �̂�𝛽𝑗𝑗 . 

 To solve for the percentage change, take the “anti-log” of both sides, i.e., make it such that 
taking the log of both sides results in the line above. 

1 +
%∆𝑦𝑦
100

= exp �̂�𝛽𝑗𝑗 ⇔ %∆𝑦𝑦 = 100 ∗ exp �̂�𝛽𝑗𝑗 − 1 . 

◦ The difference is a lot like calculating an actual elasticity in theory class—in which the starting point 
matters—compared to an “arc” elasticity (mid-point formula). 



More about logs 
1. Rescaling doesn’t matter; you’ll always get the same estimates and inference (except the 

intercept) because rescaling entails multiplying by a constant.  The constant will disappear 
into the intercept when you take the log. 

𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝑡𝑡𝑙𝑙𝑝𝑝𝑡𝑡 ∗ 𝑙𝑙; ln(𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)  = ln 𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝑡𝑡𝑙𝑙𝑝𝑝𝑡𝑡 + ln 𝑙𝑙 . 

2. Dependent variables in log form are often more likely to satisfy (at least approximate) a 
normal distribution, conditional on 𝑙𝑙.  When 𝑦𝑦 is strictly positive, the distribution is 
truncated and often skewed.  Taking the log helps with both problems. 

◦ See Chapter 5, Exercise C.4. 
◦ It also helps with heteroskedasticity. 



Even more about logs 
3. Taking the log narrows the range of some variables, which can help reduce the power of 

outliers. 
◦ Useful when you have right-skewed variables, such as income, population, or fantasy football points. 

4. Taking the log widens the range of other variables, e.g., ones that have a natural bound 
between 0 and 1, or 1 to 10. 

◦ For these it is inappropriate to make log transformations. 
◦ Obviously the same goes for variables that take negative values. 
◦ The same goes for values that take on nonnegative values, i.e., 0 ≤ 𝑦𝑦.  But you can deal with that by 

taking the log of (1 + 𝑦𝑦) instead, with little consequence. 
◦ Don’t just exclude observations that have a value of zero and estimate using the others though! 



Still more about logs (I promise this is the 
last one . . . for now) 

5. Variables measured in years (any unit of time) are typically not expressed in logs. 
◦ It isn’t very natural to think about a “percentage change” in units of time, e.g., “Alan has 8% more 

experience than Jasper” is a difficult statement to interpret. 

 If there are a lot of zeroes in the data for the dependent variable, a different kind of model 
should be applied in lieu of OLS regression.  See Chapter 17. 



Models with quadratics 
 Another simple way to enlarge the capabilities of OLS is transforming the explanatory variables 
to allow for non-constant, even non-monotonic, effects. 

 This can be accomplished by adding the square of an 𝑙𝑙 variable to the regression: 

 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙1 + 𝛽𝛽2𝑙𝑙12 + 𝑢𝑢. 



Models with quadratics (continued) 
 Though the regression only has 1 explanatory variable, its effect is not a single coefficient, and it 
is more appropriate to think of this as a multiple regression (instead of a simple one). 

 The estimates from OLS reveal the partial effect of 𝑙𝑙1, which necessarily entails changing 𝑙𝑙12 as 
well.  Simple calculus shows that this is: 

 
𝜕𝜕𝜕𝜕 𝑦𝑦 𝑙𝑙1
𝜕𝜕𝑙𝑙1

= �̂�𝛽1 + 2�̂�𝛽2𝑙𝑙1 ≈
Δ𝜕𝜕 𝑦𝑦 𝑙𝑙1
Δ𝑙𝑙1

, for discrete changes in 𝑙𝑙1. 



Models with quadratics (continued) 
 The reason for including quadratic (or higher polynomials, which work the same way) terms is to 
examine the form of the relationship. 
◦ Does the effect on y increase in magnitude with 𝑙𝑙1? 
◦ Does it diminish? 
◦ Is there a minimum or maximum, beyond which the effect changes sign? 
◦ �̂�𝛽1 and �̂�𝛽2 tell you all you need to know to answer these questions. 

 If �̂�𝛽2 is positive, for instance, the shape is an upward-opening parabola (“U”) and will have a 
minimum; if it’s negative, it is a downward-opening (“inverted U”) parabola and will have a 
maximum. 

 If �̂�𝛽1 and �̂�𝛽2 are opposite-signed, the minimum/maximum occurs in the positive interval, as in 
the figure from Wooldridge below. 



Models with quadratics (continued) 
 The reason for including quadratic (or higher polynomials, which work the same way) terms is to 
examine the form of the relationship. 
◦ Does the effect on y increase in magnitude with 𝑙𝑙1? 
◦ Does it diminish? 
◦ Is there a minimum or maximum, beyond which the effect changes sign? 
◦ �̂�𝛽1 and �̂�𝛽2 tell you all you need to know to answer these questions. 

 If �̂�𝛽2 is positive, for instance, the shape is an upward-opening parabola (“U”); if it’s negative, it is 
a downward-opening (“inverted U”) parabola. 

 If �̂�𝛽1 and �̂�𝛽2 are opposite-signed, the min./max. occurs in the positive interval, as in the figure 
from Wooldridge (next slide). 



From Wooldridge:  quadratic relationship 
between wage and experience 



Models with quadratics (continued) 
 This is because the min./max. is the point at which the function is flat, i.e., has a slope of zero.   
◦ �̂�𝛽1 + 2�̂�𝛽2𝑙𝑙1 is the function that expresses the slope as a function of 𝑙𝑙1, so you can solve for the point at 

which slope is zero by setting the partial effect equal to zero and solving for 𝑙𝑙1. 

�̂�𝛽1 + 2�̂�𝛽2𝑙𝑙1 = 0 → 𝑙𝑙1∗ = −
�̂�𝛽1

2�̂�𝛽2
;  𝑙𝑙1∗ denotes the min. or max. location. 

 
𝑙𝑙1∗ > 0 if �̂�𝛽1, �̂�𝛽2 have opposite signs. 

 



Models with quadratics (continued) 
 Sometimes both sides (upward and downward sloping) of the parabola are interesting. 

 If the model is correctly specified (!), and you have observations that fall on both sides of the 
min/max, it could reveal non-monotonicity:  initially 𝑙𝑙1 is “good” for the outcome, 𝑦𝑦, but beyond 
some limit it is “bad,” and is associated with a decrease in 𝑦𝑦. 

 An example is the quantity-quality trade-off for parents when they decide how many kids to 
have.  To be concrete, think of the relationship in terms of the regression, 

 
𝑘𝑘𝑙𝑙𝑘𝑘𝑙𝑙 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙 + 𝛽𝛽2𝑙𝑙𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙2 + 𝑢𝑢. 



Models with quadratics (continued) 
 It is foreseeable that income has an inverted U-shaped relationship with the number of kids a 
couple has. 
◦ For low levels of income, more income implies capacity to feed and clothe children and thus, more kids. 
◦ As income increases, however, there are other opportunity costs that become greater, i.e., the parents’ 

time is more valuable.  It is theorized* that child quality (spending per child) responds to higher incomes 
as well, and can even outweigh the income elasticity for quantity.  As such, child quality is a “luxury 
good” and well-off parents can be expected to spend much more on quality than quantity—leading to 
smaller families for high earning parents (with very high spending per child). 

◦ This would be consistent with the downward-opening parabolic shape for the relationship, i.e., 

�̂�𝛽2 < 0 𝑙𝑙𝑝𝑝𝑘𝑘 �̂�𝛽1 > 0.  
  

 *Becker, Gary.  1960.  “An Economic Analysis of Fertility.” In Demographic and Economic Change in Developing Countries, Princeton 
University Press.  Accessed from http://www.nber.org/chapters/c2387.pdf [7-11-2013]. 

http://www.nber.org/chapters/c2387.pdf


Models with quadratics (concluded) 
 The text gives another example where, despite estimating a (U shaped) parabolic relationship, 
one side of the parabola is irrelevant because almost no observations lie in that range. 

 It is appropriate to infer a monotonic relationship (increasing in this case, at an increasing rate) 
over the relevant range when this is true. 
◦ This also goes for instances in which both coefficients have the same sign and the dependent variable 

takes on only nonnegative values:  the min/max is guaranteed to be in the irrelevant (negative) range. 

 Finally if one wants specific estimates of the effect on 𝑦𝑦, he can simply evaluate it for some value 
of 𝑙𝑙1, e.g., the median or one or more quantiles in the distribution. 



Models with interaction terms 
 One of the most impressive aspects of regression analysis is its capacity to estimate non-
constant effects, like semi-elasticities and parabolic relationships. 

 Add to this list of capacities, interaction effects:  in which the effect of one regressor depends on 
the value of another regressor. 

 Such a model, in the simplest case, would look like: 

 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙1 + 𝛽𝛽2𝑙𝑙2 + 𝛽𝛽3𝑙𝑙1𝑙𝑙2 + 𝑢𝑢. 



Models with interaction terms 
(continued) 

 Now the partial effect of 𝑙𝑙1 depends on 𝑙𝑙2. 

 
Δ𝑦𝑦
Δ𝑙𝑙1

= 𝛽𝛽1 + 𝛽𝛽3𝑙𝑙2; also 
Δ𝑦𝑦
Δ𝑙𝑙2

= 𝛽𝛽2 + 𝛽𝛽3𝑙𝑙1. 

 As with quadratic terms, expressing the specific effect of a variable requires evaluating it at a 
particular value of the other one in the interaction, e.g., the median or one or several quantiles. 



Models with interaction terms 
(continued) 

 Just looking at the sign on the interaction, though, provides useful insight into the shape of the 
relationship. 

 An interaction term between education and experience in an earnings regression (𝑦𝑦 =
log(𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑝𝑝𝑒𝑒𝑙𝑙)) reveals whether more schooling increases the return to experience. 
◦ It does if the coefficient on the interaction is positive. 

 If the model is: 
log 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑝𝑝𝑒𝑒𝑙𝑙 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑘𝑘𝑢𝑢𝑙𝑙 + 𝛽𝛽2𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙 + 𝛽𝛽3𝑙𝑙𝑘𝑘𝑢𝑢𝑙𝑙 ∗ 𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙 + 𝑢𝑢, 

 the return to experience is 𝑅𝑅𝑟𝑟𝑥𝑥𝑒𝑒𝑟𝑟𝑟𝑟 = �̂�𝛽2 + �̂�𝛽3𝑙𝑙𝑘𝑘𝑢𝑢𝑙𝑙 . 



Models with interaction terms 
(continued) 

 �̂�𝛽2 can be thought of as the return to a year of  experience if the individual has no (𝑙𝑙𝑘𝑘𝑢𝑢𝑙𝑙 = 0) 
education. 
◦ If �̂�𝛽3 is positive, the return increases the more education an individual has. 

 Formally, 
𝜕𝜕𝑅𝑅𝑟𝑟𝑥𝑥𝑒𝑒𝑟𝑟𝑟𝑟
𝜕𝜕𝑙𝑙𝑘𝑘𝑢𝑢𝑙𝑙

= �̂�𝛽3;  �̂�𝛽3 > 0 → return to experience increases with education. 

  



Interactions in Stata 
 Adding quadratic terms and interactions is easy using the fvvarlist feature and without having to 
generate a bunch of new variables explicitly. 

 The syntax for an interaction is: 

 reg [depvar] {noninteracted indvars} c.[variable1]##c.[variable2], 

 and Stata will perform the interaction plus include the linear terms for both variables 1 and 2.   

 This is because of the double pound signs, which mean “full interaction”. 
◦ The “c” in front of each variable is for “continuous” to distinguish the treatment from “i” for 

“indicators”—which is something we will discuss in a subsequent lesson. 



While we’re at it . . . quadratic terms in 
Stata 

 A quadratic is just a special case of an interaction, in which variable1 is identical to variable2: 

 reg [depvar] {noninteracted indvars} c.[variable1]##c.[variable1]. 



More on goodness-of-fit and selection of 
regressors 

 Interpreting the results of a regression takes the forms of testing hypotheses about the 
coefficients, inquiring about the validity of the Gauss-Markov Assumptions, and asking whether 
an estimated effect can properly be interpreted as causal. 

 None of these questions explicitly depends on having a particularly large 𝑅𝑅2.  A high 𝑅𝑅2 does not 
imply a causal relationship; nor does a low 𝑅𝑅2 mean that your hypothesis tests are invalid. 
◦ If the regression is using experimental data, the variation in 𝑙𝑙 is exogenous by design, so it doesn’t 

matter how many other unobserved factors enter the model (driving down 𝑅𝑅2); the evidence should be 
interpreted as causal (see the example in the text involving apples, page 201). 



Goodness-of-fit 
 Low 𝑅𝑅2 results from a large error variance, though, so this can make the standard errors from a 
regression large—and inference more difficult. 
◦ But this can be overcome with a larger sample size.   
◦ And it is also more difficult to predict precise values of the dependent variable because the errors are 

large and most of the predictors are not included in the model. 
◦ Lastly F tests are based on changes in 𝑅𝑅2 when variables are added, so it does have an instrumental role 

in inference for that reason. 

 But the size of 𝑅𝑅2 is not particularly important except for these reasons. 



Adjusted R squared 
 A technical aspect of 𝑅𝑅2 that we have not made explicit yet is that it is a sample statistic that 
estimates the population R-Squared, 

𝜌𝜌2 ≡ 1 −
𝜎𝜎𝑢𝑢2

𝜎𝜎𝑦𝑦2
. 

 The “sigma” terms are the variances of the error and 𝑦𝑦, respectively, which are estimated by: 

 

𝜎𝜎�𝑢𝑢2 =
𝑆𝑆𝑆𝑆𝑅𝑅

𝑝𝑝 − 𝑘𝑘 − 1
, s. t. ,𝜕𝜕 𝜎𝜎�𝑢𝑢2 = 𝜎𝜎𝑢𝑢2 and 𝜎𝜎�𝑦𝑦2 =

𝑆𝑆𝑆𝑆𝑆𝑆
𝑝𝑝 − 1

, s. t. ,𝜕𝜕 𝜎𝜎�𝑦𝑦2 = 𝜎𝜎𝑦𝑦2. 



Adjusted R squared (continued) 
 SSR is the total sum of squares of the residuals; SST is the total sum of squares of 𝑦𝑦. 
◦ These are the unbiased estimators of both population variances. 

 In order for 𝑅𝑅2 to reflect these estimates, it ought to be calculated with the degrees of freedom 
included. 
◦ This expression differs from the original 𝑅𝑅2, which does not include the degrees of freedom 

adjustments. 

𝑅𝑅2 = 1 −
𝑆𝑆𝑆𝑆𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆

, whereas 𝑅𝑅�2 = 1 −
𝑆𝑆𝑆𝑆𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆

𝑝𝑝 − 1
𝑝𝑝 − 𝑘𝑘 − 1

 



Adjusted R squared (concluded) 
 The version that adjusts for degrees of freedom used by the (𝑘𝑘) variables in the regression is 
called adjusted R-Squared.   

 Whereas regular 𝑅𝑅2 always increases when more regressors are added, 𝑅𝑅�2 does not.   
◦ In both cases the SSR decreases when more (relevant) regressors are added.   
◦ But only adjusted 𝑅𝑅2 accounts for the increase in 𝑘𝑘.  Thus there is a “penalty” for adding more 

explanatory variables.  Adjusted 𝑅𝑅2 will only increase if the added variable explains “enough” variation 
in 𝑦𝑦 to justify its inclusion in the model. 

 STATA reports both variations by default when you run any regression, and the two statistics can 
readily be converted if you know 𝑝𝑝 and 𝑘𝑘. 



Using adjusted R squared to choose 
between non-nested models 

 One application of adjusted 𝑅𝑅2 is to choosing between two competing models for the effect of 
an 𝑙𝑙 variable, e.g., one with a logarithmic specification and one with a quadratic. 

 Comparing regular 𝑅𝑅2 for the two models disadvantages the more “parsimonious” model (logs) 
with only one variable; however, comparing 𝑅𝑅�2 would be a fair test because it adjusts the 
quadratic version’s statistic based on 1 less degree of freedom. 



Adjusted R squared and non-nested 
models (continued) 

 This comparison can also be useful for choosing between two highly collinear covariates, such as 
an individual’s years of potential labor force experience (𝑙𝑙𝑒𝑒𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑝𝑝𝑒𝑒 − 6) and his actual 
years of experience (self-reported in a survey). 
◦ These specifications constitute a pair of non-nested models, in which neither is a special case of the 

other. 

 The F test for exclusion restrictions can tell you whether the two specifications for experience 
jointly belong in the regression, but it doesn’t tell you which one is better individually.   

 Comparing 𝑅𝑅�2 between the two competing specifications can resolve this uncertainty in favor of 
the one with higher 𝑅𝑅�2. 



Controlling for too many factors in 
regression analysis 

 An empiricist is right to worry that he has excluded a relevant variable from his analysis—
particularly one that violates Assumption MLR. 4 and biases the estimates. 

 It is possible to veer in to excess in the other direction as well by over controlling.   
◦ This is the name for including too many variables in the regression, to the point at which the ceteris 

paribus interpretation of the effects is obscured. 

 Consider the following cautionary examples that can be classified as over controlling. 



Examples of over controlling 
1. Testing the effect of a policy change, e.g., different rates of beer taxation on traffic fatalities, 

and controlling separately for the mechanism (beer consumption) through which the policy 
operates. 

◦ “The effect of the tax, holding consumption constant” is an uninteresting result compared to “the 
effect of the tax, given that consumption decreases accordingly.” 

2. Controlling for something that is a subset of the dependent variable. 
◦ Doctor visits are one component of health expenditures.  Regressing health expenditures on 

measures of health risks, and controlling for doctor visits, relegates the estimated effects to 
explaining only the portion of health expenditures on prescriptions and other non-doctor-visit 
medicine, and it would be curious why they would have such an interpretation without more 
elaboration. 



Examples of over controlling (concluded) 
3. The purpose of the estimation is another factor.  In a model of house prices as a function of 

their attributes, the goal is to put prices on attributes that are not unbundled from the whole 
house and sold separately with explicit prices, e.g., there is no market for a “3rd bedroom” 
sold separately from a whole house and, hence, no price.  To this end, there is confusion if 
the empiricist controls for the house’s assessed value in addition to its attributes.  If you’re 
trying to see how much marginal value the attributes actually contribute, it is unnecessary to 
hold the house’s value constant. 

◦ If the purpose of the regression was testing the accuracy of the assessments, of course, it would be 
necessary to include the assessed value and interesting to see if its 1:1 predicted relationship is 
robust to controlling for attributes of the houses. 



Adding regressors to reduce error 
variance 

 There is a trade-off faced when adding regressors to a model. 
◦ On one hand it reduces the error variance, but on the other it “partials out” more of the variation in the 

other regressors and adds to multicollinearity. 

 Unless it doesn’t.  If a regressor is uncorrelated with all the others in which one is interested, it 
should definitely be included in the model because the multicollinearity trade-off doesn’t exist, 
and it just increases the precision of the estimates. 



Prediction and residual analysis 
 Confidence Intervals for Predictions 

 After estimates are made using OLS, the model can be “fitted” by evaluating it at each 
observation using the estimated coefficients and intercept. 

𝑦𝑦� = �̂�𝛽0 + �̂�𝛽1𝑙𝑙1+. . . +�̂�𝛽𝑘𝑘𝑙𝑙𝑘𝑘 , where 

 𝑦𝑦� is the “fitted value”, “prediction” or “expected value of 𝑦𝑦, conditional on a set of 𝑙𝑙”. 

 Its variance is a complex function of variances and covariances, but estimating it is not 
fundamentally different from a linear combination (“lincom”) of estimates. 
◦ As in chapter 4. 



Prediction and residual analysis 
(continued) 

 𝜃𝜃0 is the linear combination of all the estimators. 
◦ But what is the standard error of a prediction, given a set of 𝑙𝑙? 
◦ As with hypotheses about linear combinations of estimators, the regression model can be rewritten in 

term of the linear combination. 
𝛽𝛽0 = 𝜃𝜃0 − 𝛽𝛽1𝑙𝑙1−. . .−𝛽𝛽𝑘𝑘𝑙𝑙𝑘𝑘  can be substituted into 

 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙1+. . . +𝛽𝛽𝑘𝑘𝑙𝑙𝑘𝑘 + 𝑢𝑢 to get 

 
𝑦𝑦 = 𝜃𝜃0 + 𝛽𝛽1 𝑙𝑙1 − 𝑙𝑙1 +. . . +𝛽𝛽𝑘𝑘 𝑙𝑙𝑘𝑘 − 𝑙𝑙𝑘𝑘 + 𝑢𝑢. 

 



Prediction and residual analysis 
(continued) 

 Regressing y on the differenced x variables will produce an estimate of 𝜃𝜃0 in the form of the 
intercept, along with its standard error! 

 This can be used along with a t value reflecting the desired confidence level to construct a 
confidence interval around the prediction of the form: 

𝑦𝑦� ± 𝑙𝑙𝑙𝑙 �̂�𝜃0 𝑡𝑡𝛼𝛼
2

. 



Predictions with Stata 
 The example (6.5) in the text can be performed using STATA (after performing the regression) 
using the syntax: 

 lincom _cons+sat*1200+hsperc*30+hsize*5+hsizesq*25. 

 The closer each of the values of 𝑙𝑙𝑗𝑗  gets to its sample mean, the less variation there will be in the 
linear combination, which should be intuitive. 
◦ The estimates should be the “best” and most accurate near the middle of the distribution. 



Predicting y for individual observations 
 The procedure (on the last slide) predicts the conditional expectation of y and its standard error.   

 This is not the same thing as predicting the value of an individual observation of y in the sample.   
◦ It’s analogous to the difference between predicting a single random draw from a distribution and 

predicting the mean of several draws from the same distribution. 
◦ The latter should be much more precise than the former. 
◦ But, as with predicting a single value and predicting a mean, the expected value is the same. 
◦ When predicting an individual value of y, we will use the notation, 𝑙𝑙𝑗𝑗0, to distinguish it from predicting a 

linear combination (as before).   

 Fitting the model yields the prediction: 
𝑦𝑦�0 = �̂�𝛽0 + �̂�𝛽1𝑙𝑙10+. . . +�̂�𝛽𝑘𝑘𝑙𝑙𝑘𝑘0. 



Prediction (standard) error 
 The standard error of an individual value, however, must account for the variation in the error 
term, as well. 

 This is derived from differencing 𝑦𝑦�0 and the population value 𝑦𝑦0, which includes the error term. 

 Deriving the standard error of the prediction is subtly different from the standard error of the 
conditional mean. 

 But, 

 𝑙𝑙𝑙𝑙 𝑦𝑦�0 = 𝑉𝑉𝑙𝑙𝑙𝑙 𝑦𝑦� + 𝜎𝜎2
1
2. 



Prediction (standard) error (continued) 
 With the standard error (root of variance of the prediction error) in hand, you can proceed to 
construct confidence intervals for a prediction about a single observation of y.   

 The procedure does not differ from previous examples so we will summarize it here briefly. 

 The interval with confidence level (1 − 𝛼𝛼) and n-k-1 degrees of freedom is: 

  
𝑦𝑦�0 ± 𝑙𝑙𝑙𝑙 𝑦𝑦�0 𝑡𝑡𝛼𝛼 . 



Prediction (standard) error (concluded) 
 In Stata the difference between the 2 predictions is equally subtle.  For the standard error about 
the conditional mean (more precise, smaller error), the code after running the regression is: 

 predict {nameforse(yhat)}, stdp 

 For the standard error about an individual observation (less precise because of residual 
variance), the code after regress is: 

 predict {name for se(yhat0)}, sdtf 

 with the difference being the “f” rather than the “p”. 



Residual analysis 
 Useful insights can be obtained from comparing regression-predicted values to observed values 
of y. 
◦ Does the regression model predict a particular observation accurately, i.e., do we observe the value we 

expect, conditional on observations of the x variables? 
◦ Is the observed y notably above or below the conditional expectation? 
◦ If so the empiricist may ask what unobserved factor explains the residual. 

 This kind of inquiry is called residual analysis.  It involves looking at one or more of the sample 
residuals, 

𝑢𝑢�𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 , 

 to learn about the validity of the model as a particular observation (or set of) is concerned. 



Conclusion 
 OLS has much more genera applicability than stated in the introductory chapter.  Being linear in 
parameters does not preclude: 
◦ Non-constant effects of x on y, 
◦ Non-monotonic, e.g., quadratic, effects of x on y, 
◦ Effects of one x that depend on the value of another x, i.e., interaction terms. 

 Causality and a high R squared are not synonymous. 
◦ It is possible to over control for x variables in a regression, and there is a degrees of freedom trade off 

(captured by adjusted R squared) for adding regressors. 

 The conditional expectation of y (on x) and the prediction of an individual observation of y have 
different standard errors, with the latter having a wider confidence interval. 

  



Optional:  data scaling derivation 
 If the original model is: 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙 + 𝑢𝑢, 
∆𝑙𝑙 = 1 → ∆𝑦𝑦 = 𝛽𝛽1, and ∆𝑙𝑙 = 1000 → ∆𝑦𝑦 = 1000𝛽𝛽1. 

 Re-scaling 𝑙𝑙 by a constant, such as 1000, means defining a new 𝑙𝑙: 

𝑙𝑙′ ≡
𝑙𝑙

1000
; ∆𝑙𝑙′ = 1 ⇔ ∆𝑙𝑙 = 1000. 

 You can modify the regression model to estimate the effect of 𝑙𝑙′: 
𝑦𝑦 = 𝛽𝛽0 + 1000𝛽𝛽1𝑙𝑙′ + 𝑢𝑢, such that ∆𝑙𝑙′ = 1 → ∆𝑦𝑦 = 1000𝛽𝛽1. 

 This is the same marginal effect estimated by the original regression. 
◦ This is what you’re doing when you re-scale variables.  The new coefficient will be exactly 1000 times 

bigger than the old one, to account for the new (larger) units. 



Data scaling derivation (continued) 
 A similar lesson applies to re-scaling 𝑦𝑦: 

when,𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙 + 𝑢𝑢, and 

𝑦𝑦′ ≡
𝑦𝑦

1000
; ∆𝑦𝑦′ = 1 ⇔ ∆𝑦𝑦 = 1000. 

 You can estimate the effect on 𝑦𝑦′: 

𝑦𝑦′ =
𝛽𝛽0

1000
+

𝛽𝛽1
1000

𝑙𝑙 +
𝑢𝑢

1000
, such that ∆𝑙𝑙 = 1 → ∆𝑦𝑦′ =

𝛽𝛽1
1000

. 

 This is exactly 1
1000

 as large as the original coefficient, e.g., if 𝑦𝑦 is in $, and 𝛽𝛽1is 2250, 𝑦𝑦 increases 

by $2,250 or 2.250 = 𝛽𝛽1
1000

 thousand dollars . . . which is the same amount. 
◦ Back. 



Optional:  variance of fitted values 
𝑉𝑉𝑙𝑙𝑙𝑙 𝑦𝑦� = 𝜕𝜕[ 𝑦𝑦� − 𝜕𝜕 𝑦𝑦� 2 = �̂�𝛽0 − 𝛽𝛽0 + � �̂�𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗 

𝑘𝑘

𝑗𝑗=1

𝑙𝑙𝑗𝑗

2

 

= 𝑉𝑉𝑙𝑙𝑙𝑙 �̂�𝛽0 + �𝑉𝑉𝑙𝑙𝑙𝑙 �̂�𝛽𝑗𝑗 𝑙𝑙𝑗𝑗2
𝑘𝑘

𝑗𝑗=1

+ 2�𝐶𝐶𝑝𝑝𝐶𝐶 �̂�𝛽0, �̂�𝛽𝑗𝑗 𝑙𝑙𝑗𝑗 + ��𝐶𝐶𝑝𝑝𝐶𝐶 �̂�𝛽𝑗𝑗 , �̂�𝛽𝑚𝑚 𝑙𝑙𝑗𝑗𝑙𝑙𝑚𝑚

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑚𝑚≠𝑗𝑗

𝑘𝑘

𝑗𝑗=1

 

 So the standard error is obviously pretty tough to calculate by hand. 
◦ That’s why the clever method of parameterizing 𝑦𝑦� (as the intercept like on Wooldridge 207-208) was 

devised. 
 

 Back. 



Optional:  variance of the prediction 
 For predicting the individual observation, the standard error is based on how far from the observed y the 
prediction is likely to be, not how far from the population model’s expectation. 

 So we take the variance about 𝑦𝑦0: 

𝑉𝑉𝑙𝑙𝑙𝑙 𝑦𝑦�0 = 𝜕𝜕[ 𝑦𝑦�0 − 𝑦𝑦0 2 = �̂�𝛽0 − 𝛽𝛽0 + � �̂�𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗 
𝑘𝑘

𝑗𝑗=1

𝑙𝑙𝑗𝑗 − 𝑢𝑢

2

, 

 which adds another term (u). 

𝑉𝑉𝑙𝑙𝑙𝑙 𝑦𝑦�0 =  𝑉𝑉𝑙𝑙𝑙𝑙 �̂�𝛽0 + �𝑉𝑉𝑙𝑙𝑙𝑙 �̂�𝛽𝑗𝑗 𝑙𝑙𝑗𝑗2
𝑘𝑘

𝑗𝑗=1

+ 2�𝐶𝐶𝑝𝑝𝐶𝐶 �̂�𝛽0, �̂�𝛽𝑗𝑗 𝑙𝑙𝑗𝑗 + ��𝐶𝐶𝑝𝑝𝐶𝐶 �̂�𝛽𝑗𝑗 , �̂�𝛽𝑚𝑚 𝑙𝑙𝑗𝑗𝑙𝑙𝑚𝑚

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑚𝑚≠𝑗𝑗

𝑘𝑘

𝑗𝑗=1

+ 𝑉𝑉𝑙𝑙𝑙𝑙(𝑢𝑢) 

= 𝑉𝑉𝑙𝑙𝑙𝑙 𝑦𝑦� + 𝑉𝑉𝑙𝑙𝑙𝑙 𝑢𝑢 = 𝑉𝑉𝑙𝑙𝑙𝑙 𝑦𝑦� + 𝜎𝜎2 

 Back. 



Optional:  predicting y when log(y) is the 
dependent variable 

 Fitting a model with a dependent variable in logarithmic form works the same way (fitting the 
model) as described previously. 

 1  𝑙𝑙𝑝𝑝𝑒𝑒𝑦𝑦�  ≡ �̂�𝛽0 + �̂�𝛽1𝑙𝑙1+. . . +�̂�𝛽𝑘𝑘𝑙𝑙𝑘𝑘 . 

 However transforming this prediction back into a level of y is not as simple as taking the anti-log, 
because 

ln 𝑙𝑙𝑙𝑙𝑝𝑝 �̂�𝛽0 + �̂�𝛽1𝑙𝑙1+. . . +�̂�𝛽𝑘𝑘𝑙𝑙𝑘𝑘 ≠ 𝑙𝑙𝑝𝑝𝑒𝑒𝑦𝑦�  . 



Optional:  predicting y when log(y) is the 
dependent variable 

 This results from the inclusion of the error term when you take expectations of the population 
model: 

 
1 estimates the model 𝑙𝑙𝑝𝑝𝑒𝑒𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙1+. . .𝛽𝛽𝑘𝑘𝑙𝑙𝑘𝑘 + 𝑢𝑢 

 
⇔ 𝑦𝑦 = exp 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙1+. . .𝛽𝛽𝑘𝑘𝑙𝑙𝑘𝑘 + 𝑢𝑢 . 



Optional:  predicting y when log(y) is the 
dependent variable 

 The conditional expectation of y on x is: 
2  𝜕𝜕 𝑦𝑦 𝑙𝑙 = exp 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙1+. . .𝛽𝛽𝑘𝑘𝑙𝑙𝑘𝑘 ∗ 𝜕𝜕 exp 𝑢𝑢 𝑙𝑙

= exp 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙1+. . .𝛽𝛽𝑘𝑘𝑙𝑙𝑘𝑘 exp
𝜎𝜎2

2
, if 𝑢𝑢~𝑁𝑁𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0,𝜎𝜎2 . 

 It can be shown that, exp 𝜎𝜎2

2
= 𝜕𝜕 exp 𝑢𝑢 = 𝜕𝜕 exp 𝑢𝑢 𝑙𝑙 . 



Optional:  predicting y when log(y) is the 
dependent variable 

 (2) is the consistent estimator of 𝑦𝑦� when the errors are normally distributed and the unbiased 
estimator (𝜎𝜎�2) of 𝜎𝜎2 is used to calculate the prediction. 

 If the errors are not normally distributed, which is a desirable assumption to relax, (2) can be 
generalized by replacing the specific form under normality exp 𝜎𝜎2

2
 with 

 
𝛼𝛼0 = 𝜕𝜕 exp 𝑢𝑢 , such that,𝜕𝜕 𝑦𝑦 𝑙𝑙 = 𝛼𝛼0 exp 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙1+. . .𝛽𝛽𝑘𝑘𝑙𝑙𝑘𝑘 . 



Optional:  predicting y when log(y) is the 
dependent variable 

 The last remaining problem is estimating 𝛼𝛼0. 

 This can be done consistently (but not without bias) by replacing the expectation with its sample 
analog, 

𝛼𝛼�0 =
1
𝑝𝑝
� exp 𝑢𝑢�𝑖𝑖

𝑛𝑛

𝑖𝑖=1

. 

 Then the level of y can be predicted from a regression with y in logs using the following. 

 3  𝑦𝑦� = 𝛼𝛼�0 exp �̂�𝛽0 + �̂�𝛽1𝑙𝑙1+. . . �̂�𝛽𝑘𝑘𝑙𝑙𝑘𝑘 . 



Optional:  predicting y when log(y) is the 
dependent variable 

 In addition to merely predicting levels from a logarithmic regression, the fitted values in levels 
can be used to compare the log version to the levels regression. 

 The empiricist can obtain the 𝑅𝑅2 from the levels regression, 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙1+. . .𝛽𝛽𝑘𝑘𝑙𝑙𝑘𝑘 + 𝑢𝑢, 

 and compare it to the 𝑅𝑅2 calculated using fitted values calculated as in (3). 

 If the latter produces a higher 𝑅𝑅2 than the regression in levels, the logarithmic specification is 
preferred by comparison to the regression in levels. 
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