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Introduction
There is a lot of (relevant) information in data about the elements observed that is not in 
quantitative form.

This chapter explores how that information can be used to create variables that can be used in a 
regression.

These methods are powerful because without them one would have to confine his methods to 
explicitly quantitative variables like age, income, years of schooling, high school GPA, et al.
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Describing qualitative information
Qualitative information can be turned into quantitative information in a straightforward way, 
using binary coding for “yes” and “no”.

For example “is a certain person in the sample female?”  
yes 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 → 𝑥𝑥 = 1 and no not 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 → 𝑥𝑥 = 0.

According to the above example, the variable x can be called a binary variable for whether or 
not each observation is female.
◦ Synonymous terms you will often hear for it are indicator variable, zero-one variable, or (regrettably) 

dummy variable.



Indicator variables
It is fairly simple to assign zeroes and ones to observations, based on dichotomous gender.

For the sake of clarity, though, it is vital to name the variable according to whether 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1
or 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.  The interpretation of the variable (and its estimated regression coefficient) 
depends on it; call the variable “female” if 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 and call it “male” if 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.

Sometimes you will find data with indicator variables already generated.
◦ Sometimes it will be purely in “string” format, i.e., a column of cells containing the words “male” or 

“female”.
◦ Sometimes it comes in numerical format that is not binary, to allow for other information, such as 

instances in which the survey respondent did not answer the question.  
◦ The data set on the next slide (shown in STATA Data Editor view) illustrates these possibilities.



Qualitative information example



Qualitative information example 
(continued)
state is a string variable; sex is a binary variable that has value labels that decode 
the numbers into words (the blue font).
◦ A “male” cell is selected, and the formula bar says that the value is “1”.
◦ For a “female” cell the value would be “2”, so this data does not have a (0,1) indicator 

for sex yet.  To generate one in STATA one would merely use the syntax:

quietly tabulate [categorical var], generate(name of indicator).

In this example, it would look like:

quietly tabulate sex, gen(sex01_)

from which STATA would generate 2 new variables, “sex01_1” and “sex01_2”.
◦ Then rename them, “male” and “female” using STATA’s rename command, e.g., 

rename sex01_1 male.



Indicator variables (continued)
Often in data, qualitative information can take more than 2 possible “values,” e.g., a sample of 
Midwesterners may report their state of residence as:  Wisconsin, Minnesota, Illinois, Iowa, 
Indiana, Ohio, or Michigan.

Generating indicator variables for state will result in one new variable per value, i.e., 7 for the 
Midwest.
◦ It would be 50 if you had the whole U.S. (excluding Washington, D.C., and the territories).
◦ Tabulating the variable “race3” in this data would result in 3 indicators:  “white”, “black” and “other”.



Qualitative information example (2)



Indicator variables (concluded)
For a given observation, only 1 of the indicators equals 1; all the others equal zero.
◦ Indicator variables break the qualitative information into mutually exclusive categories.
◦ Using “tabulate” to create indicator variables generalizes even to variables that have ordinal

significance, such as a schooling variable that takes on values such as:  “no H.S. diploma”, “H.S. 
diploma/GED”, “Some college”, “College degree”. 

◦ But the interpretation is more difficult when the variable being tabulated has ordinal significance or 
takes on many values or both.

We will begin with a very straightforward case in which neither of those complications exists.



Regression with a single binary 
independent variable
Indicator variables can enter a regression model the same way as continuous (x) variables.  E.g., 
the female indicator in a wage regression would be modeled:

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝛽𝛽0 + 𝛿𝛿0𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝛽𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑢𝑢.

The coefficient on female is interpreted as the difference in conditional expectations between 
when 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 (woman) and when 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0 (man).

𝛿𝛿0 = 𝐸𝐸 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 − 𝐸𝐸 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0 or

𝛿𝛿0 = 𝐸𝐸 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐸𝐸 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 .



The effect of a binary indicator variable



A single binary independent variable 
(continued)
If 𝛿𝛿0 < 0, the results show that, for a given level of education, women earn less than men in the 
sample.

The common coefficient on education for women and men restricts each group to having the 
same returns to additional schooling.

But a non-zero coefficient on female means that women have a different intercept than men.

1. The intercept for observations with 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0 is merely 𝛽𝛽0,

2. For observations with 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1, the intercept shifts by 𝛿𝛿0,

3. The slope of the wage-schooling relationship does not change; for both sexes they are 
parallel.



A single binary independent variable 
(continued)
In this estimation, men are the base group, i.e., the group that maintains the generic intercept 
term, 𝛽𝛽0.
◦ It would be redundant to include the indicator for “male” in the regression and attempt to estimate 

another parameter that 𝛽𝛽0 already estimates.

Furthermore it would be impossible because female and male are perfectly collinear, as a result 
of being mutually exclusive and exhaustive.

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 ⇔ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,

means male is a perfect linear function of female and has no independent variation in the 
sample with which to estimate its coefficient.



A single binary independent variable 
(continued)
Including additional non-indicator variables in the regression does not alter the above 
interpretation of the indicator coefficient.

The practical significance of 𝛿𝛿0 is measuring whether comparably productive (!) men and 
women earn the same wages, or whether discrimination (or something else?) could contribute 
to wage disparity.  

This could be inferred from the test of statistical significance:

𝐻𝐻0: 𝛿𝛿0 = 0 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐻𝐻1: 𝛿𝛿0 ≠ 0.



Aside:  interpreting the gender 
indicator’s coefficient
As with non-binary regressors, an empiricist must ask whether Assumption MLR.4 is realistic:  “is 
the binary variable of interest correlated with the error term?”

In the example of gender in the labor market, the models in the text do not condition on the 
attributes of the jobs chosen by each gender.
◦ Compensating Differentials theory predicts that workers are paid more for working jobs that involve 

disamenities such as unpleasant (noisy, dirty, et al.) conditions, injury risk, or strenuous schedules.
◦ If men are more likely to select into unpleasant jobs than comparably-skilled women, their higher wages 

reflect payments for tolerating disamenities, rather than discrimination.



A single binary independent variable 
(concluded)
Similar considerations should be made in the other textbook examples, as well as any instance in 
which the assignment to groups is the result of an agent’s choice, e.g., owning a personal 
computer (example 7.2) and participating in a job training program (7.3).

The responsible empiricist ought to ask whether “more ambitious students are more likely to 
voluntarily purchase a PC than less ambitious students?” and whether “a firm is more likely to 
pursue a training subsidy if it was already planning to perform a lot of worker training?”  
◦ A PC is probably a valuable input to success in college, and incentivizing training with a grant is likely to 

cause more training, but when the selection is non-random, it is impossible to know how much of the 
estimated effect is causal and how much is from the self-selection bias.

The promise of OLS in answering questions like these (so called program evaluations) lies in 
controlling for enough other factors that the estimated effect (𝛿𝛿0) of program participation 
(participation=1) can be interpreted as evidence of a causal effect.



Interpreting coefficients on binary 
variables when the LHS is log(y)
As with non-binary regressors, the coefficient on a binary variable has a percentage change 
interpretation.

For the example of the female indicator in the wage regression, the results (next slide) from 
estimating [7.9] show a coefficient estimate of 𝛿𝛿0 = −0.2965.

Using the approximation to % change, this is a 29.65% wage penalty for women.
◦ Since it is a fairly large change, however, the approximation is likely inappropriate.  The % penalty from a 

discrete change of one unit (0 to 1) in the female indicator is:

%∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 100 exp −0.296511 − 1 = −25.66%.



Effects when the LHS is log(y) example



Using binary variables for multiple 
categories
It is not significantly more challenging to include multiple sets of indicator variables in the same 
regression model.
◦ On the subject of discrimination, a researcher may also be interested in whether white workers are paid 

a premium compared to similar (in terms of education, experience, tenure) non-white workers.

An indicator for nonwhite is in the data, and it can be added individually to the regression.

It can also be interacted with another indicator, e.g., female.

The model would become:
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
= 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛽𝛽2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛽𝛽3𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟2 + 𝛽𝛽4𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽5𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒2 + 𝛽𝛽6𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝛽𝛽7𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
+ 𝛽𝛽8𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑢𝑢.



Binary variables for multiple categories 
(continued)
Now it is possible to estimate 4 different intercepts for each combination of female and 
nonwhite, with white males being the base group (𝛽𝛽0).  
◦ The intercept for white females is (𝛽𝛽0 + 𝛽𝛽6); 
◦ for non-white males it is (𝛽𝛽0 + 𝛽𝛽7), and 
◦ for non-white females it is (𝛽𝛽0 + 𝛽𝛽6 + 𝛽𝛽7 + 𝛽𝛽8).



Binary variables for multiple categories 
(continued)
This isn’t exactly how the concept is presented in Wooldridge, but it is equivalent to generating 
indicators for each combination of female and nonwhite and using any 3 (=4-1) of them in the 
OLS estimation.
◦ Even though the interaction of indicators isn’t covered until Chapter 7.4, it’s easier to explain this as a 

special case of an interaction instead of thinking about exotically-defined groups.

This is a convenient opportunity to explain how to tell STATA to regress using indicator 
variables—without generating the indicators in the data set—using factor variables (fvvarlist).  

To perform the regression described above, the syntax (Wooldridge data file wage1.dta) is:

reg lwage i.female##i.nonwhite educ c.exper##c.exper c.tenure##c.tenure.



Interaction of indicator variables example



Interaction of indicator variables example 
(continued)
The regression output implies estimated wage penalties (compared to white men) of:

100 exp −0.2800874 − 1 = −24.43% for white women,
100 exp −0.39693838 − 1 = −32.69% for non− white women.

The comparison between white and non-white men is not statistically significant in this 
sample—and opposite in sign compared to the prediction of discrimination.  

Neither is there a statistically significant difference (|𝑡𝑡| = 1.38) between white and non-white 
women, but it does run in the predicted direction.



Binary variables for multiple categories 
(concluded)
The emphasis, in terms of STATA programming, is on the use of the “i.” in the factor variables 
coding, in contrast to the “c.” used for interactions between continuous variables.  

“i.” interacts combinations of values of the variables instead of simply interacting the variables 
themselves (exper and tenure in the present example).  

Use of “i.” will automatically drop one category as the base.  In this case, it dropped the “right” 
one as specified in our model.  
◦ If it drops the “wrong” one, you may specify the base category by adding “b#” to the prefix, where # is 

the category you want to be the base.



Incorporating ordinal information by 
using binary variables
The variables examined so far have been categorical (merely classifying by group) and has not 
had ordinal significance, i.e., meaningful order.
◦ The ratio scale variables used so far have meaningful order, but they also have a meaningful zero value 

(educ=0 implies zero years of education) and differences (12 years is 1 more than 11 years) are 
meaningful.

In this discussion, the focus is on variables like credit (bond) rating, subjective well-being, and 
the so-called “temperature” scales of approval/disapproval.
◦ They are ordinal in the sense that a higher rating indicates “more” of something (creditworthiness, well-

being, approval), but a one unit increase is difficult to interpret and is unlikely to be uniformly 
meaningful across the scale of measurement.

◦ E.g., is the difference between “strongly disapprove” and “disapprove” the same as the difference 
between “disapprove” and “neither approve nor disapprove”?



Ordinal information (continued)
To ameliorate this shortcoming, indicator variables for each level (excluding one as the base) of 
an ordinal variable are added to the regression model to capture the non-constant effects of 
each change.

For concreteness a survey may ask respondents to approve or disapprove of the Federal 
Reserve’s monetary policy according to the scale:

𝐹𝐹𝐹𝐹𝐹𝐹 =

5, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
4, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
3, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
2, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑



Ordinal information (continued)
A regression of the respondents’ investment behavior on Fed approval level (and other not 
explicitly listed factors) would appear as:

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛿𝛿1𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛿𝛿2𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛿𝛿3𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛿𝛿4𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,

where “strongly approve” is the omitted (base) level.  

The coefficients are simple to interpret.
◦ 𝛿𝛿4 is the effect on investment of diminishing one’s approval of the Fed from strong to regular.
◦ 𝛿𝛿3 captures the effect of diminishing it to the point of indifference, and so on.



Ordinal information (continued)
A special case of this method emerges when you reconstruct the indicator variables into the 
ordinal variable FRa.

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 2𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 3𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 4𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 5𝐹𝐹𝐹𝐹𝐹𝐹𝐹.

Estimating the model with FRa as ratio scale,
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛾𝛾1𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,

is tantamount to placing restrictions on the coefficients in the more flexible model with 
indicators.
◦ The restrictions are:  𝛿𝛿2 = −2𝛾𝛾1, 𝛿𝛿3 = −3𝛾𝛾1, and so forth.

As usual the validity of those restrictions can be tested using the appropriate F statistic.



Ordinal information (concluded)
Occasionally an ordinal variable takes on too many values to include indicators for each one.  

When this occurs, they can be broken down into a smaller number of groups that are larger in 
size.

E.g., if approval is rated on a 1-100 scale, the ratings can be broken down into groups of 10 
instead of putting in 99 indicators.



Interactions of binary and ratio variables
Now you have encountered interactions between two ratio scale variables (think education and 
experience), two indicator variables (female and nonwhite).

One more possibility is the interaction of a ratio variable with an indicator variable.
◦ In the wage-by-gender example, such an interaction would enable the researcher to see if there is a 

difference in the slopes of the two genders’ education profiles as well as in the intercepts.  
◦ This can be accomplished by including an interaction term between female and educ:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽0 + 𝛿𝛿0𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝛽𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛿𝛿1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑢𝑢.



Interactions of binary and ratio variables 
(continued)
Now 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the wage-schooling 
locus for men, and the wage-schooling 
locus for women is (𝛽𝛽0 + 𝛿𝛿0 +



Interactions of binary and ratio variables 
(continued)
The first panel (a) depicts a case where women’s intercept and slope are smaller than men’s:  
𝛿𝛿0 < 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿1 < 0.

In panel (b), the intercept is lower but the “return to schooling” (slope) is actually greater for 
women:  𝛿𝛿0 < 0 and 𝛿𝛿1 > 0.

Either of the above hypotheses can be tested individually, or they can be tested jointly to 
determine if men and women have different wage-schooling loci:

𝐻𝐻0: 𝛿𝛿0 = 𝛿𝛿1 = 0;𝐻𝐻1: at least one 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 coefficient is nonzero.



Binary-ratio interactions in Stata
To perform the regression in STATA, the fvvarlist syntax to put in the regression command is:

i.binaryvar##c.nonbinaryvar.

The estimates using the wage1.dta data set yield a rejection of 𝐻𝐻0 with high confidence, and it is 
probable that the rejection comes from a difference in intercepts (the difference in slopes is 
small in magnitude and not even close to significant on its own).
◦ See results on the next slide for the regression syntax and syntax for the (lazy man’s) F test.



Binary-ratio interactions in Stata



Testing for differences in regression 
functions across groups
To take interactions involving binary variables to their logical conclusion, consider a model in 
which all the other explanatory variables are interacted with the group indicator.
◦ Wooldridge describes an example of a regression used to determine whether male and female college 

students perform the same in college:
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
= 𝛽𝛽0 + 𝛿𝛿0𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝛽𝛽1 + 𝛿𝛿1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽2 + 𝛿𝛿2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
+ 𝛽𝛽3 + 𝛿𝛿3𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑢𝑢.

The hypothesis being tested is whether all the female coefficients are simultaneously zero:

𝐻𝐻0: 𝛿𝛿0 = 𝛿𝛿1 = 𝛿𝛿2 = 𝛿𝛿3 = 0;𝐻𝐻1: at least one 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is nonzero.



Performing the test in Stata



Testing for differences across groups 
(continued)
The F test of this hypothesis rejects the null with a high level (>99.99%) of confidence.
◦ Testing the joint significance of only the three interaction terms, however, does not reject the null.

This recommends modeling the relationship using an indicator for female as the only difference 
between the genders (𝐹𝐹 = 1.53).

Stata can easily accommodate interactions between an indicator variable and a large set of 
other explanatory variables using fvvarlist.

The syntax just replaces a single interaction variable with a parenthesis that contains a list:

i.binaryvar##c.(list of interaction variables).



A binary dependent variable:  the linear 
probability model
Technically there is nothing that prevents an empiricist from estimating a regression using OLS 
with a binary dependent variable, i.e., 𝑦𝑦 ∈ {0,1}.

There is an entire Chapter in Wooldridge (17) devoted to superior ways to handle a dependent 
variable with such limitations, but estimating it by OLS yields easy-to-interpret results and is 
easier to explain to non-economists than other methods such as probit.



The linear probability model
Setting up the usual regression model with k regressors and a binary outcome, y,

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3+. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑢𝑢,

could be used to analyze qualitative outcomes like:
◦ whether or not an individual participates in the labor force,
◦ whether spouses will dissolve (divorce) their marriage,
◦ if a firm will innovate (as measured by patent filings) or not.



The linear probability model (continued)
Very little changes about the estimation, but the interpretation of the results requires attention.  
◦ The non-stochastic part of the model represents the expectation of y, conditional on all the x.

When y is binary, though, its conditional expectation equals the probability that 𝑦𝑦 = 1:
𝐸𝐸 𝑦𝑦 𝒙𝒙 = Pr 𝑦𝑦 = 1 𝒙𝒙 .

Coefficients are usually interpreted as marginal effects on the conditional expectation of y.
◦ This is still true when y is binary, but the effects now have the “change in probability” interpretation.
◦ Since the model is linear in parameters and OLS estimates constant rates of change in probability, this is 

called the linear probability model.

The effect of the 𝑗𝑗𝑡𝑡𝑡 regressor measures

𝛽̂𝛽𝑗𝑗 =
𝜕𝜕Pr(𝑦𝑦 = 1|𝒙𝒙)

𝜕𝜕𝑥𝑥𝑗𝑗
or without calculus notation,∆Pr 𝑦𝑦 = 1 𝒙𝒙 = 𝛽̂𝛽𝑗𝑗∆𝑥𝑥𝑗𝑗 .



Linear probability model example



Linear probability model example 
(continued)
To visualize the effect, consider the model 
of labor force participation as a function of 
education and other factors.
◦ The estimated relationship is graphed here.

You can see that the slope of the line is 
constant and equal to the estimated 
coefficient from the regression results 
(previous slide).



The linear probability model (continued)
These features, however, are the undoing of the linear probability model.
◦ On the graph you will notice that the model predicts a negative (!) probability of participation (for very 

low levels of education).  
◦ This is less of a problem compared to the other end of the distribution, in which college graduate 

women (with observed covariates) are predicted to participate in the labor force with probability:

Pr 𝑦𝑦 = 1 𝒙𝒙 = 0.5855 − 16.73 ∗ 0.0034 + 16 ∗ 0.38 + 27 ∗ 0.0395 − 272 ∗ 0.0006 − 45 ∗
0.0161 + 3 ∗ 0.013 = 1.083 > 𝟏𝟏.

◦ The covariates are:  age 45, 3 children over 6 years old, 27 years of experience, non-wife income of 
16.73 (1000s), and 16 years of education.



The linear probability model (continued)
So the linear probability model allows for fitted values that are impossible, but this can still be 
useful if you don’t take the results literally.
◦ Consider the model’s prediction to mean merely that a 45 year old college graduate with no small 

children is highly likely to work.
◦ But there are 17 women in the sample for which the model predicts probability greater than 1 (and 16 

with less than 0).

The constant marginal effects are equally uncomfortable.  The possibility of changing probability 
by more than 1 in either direction is absurd, but technically possible, in the linear probability 
model:
◦ this is what would happen by going from 0 to 4 children under 6.

∆Pr 𝑦𝑦 = 1 𝒙𝒙 = −0.2618 ∗ 4 = −1.048.



The linear probability model (continued)
Even if this was not a risk, the restriction that the effects are constant over the distribution of x
is unrealistic.

Going from 0 to 1 child would likely reduce the probability of participation severely, but having a 
second child would not reduce the probability of working much more, 
◦ i.e., a mother who is going to stay home to care for children is probably doing it already for the first 

child.



Inference about the linear probability 
model
The problem of impossible fitted values can be ameliorated using an indicator function that 
assigns a 0 or 1, based on whether the fitted value is at least 0.5.

�𝑦𝑦𝑖𝑖 ≡ 1 �𝑦𝑦𝑖𝑖 ≥ 0.5 𝑠𝑠. 𝑡𝑡. �𝑦𝑦𝑖𝑖 = �0, �𝑦𝑦𝑖𝑖 < 0.5
1, �𝑦𝑦𝑖𝑖 ≥ 0.5

Along with the observed values of y, this set of predictions suggests a way of testing the 
goodness-of-fit:  the percentage correctly predicted.

%𝐶𝐶𝐶𝐶 ≡ 𝑛𝑛−1�
𝑖𝑖=1

𝑛𝑛

[ �𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖 + 1 − �𝑦𝑦𝑖𝑖 1 − 𝑦𝑦𝑖𝑖 ] .



The linear probability model (concluded)
One more problem with the linear probability model is that it automatically violates the 
homoskedasticity assumption because the variance of the dependent variable, and therefore 
the error term, depends on x:

𝑉𝑉𝑉𝑉𝑉𝑉 𝑦𝑦 𝒙𝒙 = Pr 𝑦𝑦 = 1 𝒙𝒙 ∗ 1 − Pr 𝑦𝑦 = 1 𝒙𝒙 .

This presents a problem for inference because the test statistics presented so far have been 
justified under homoskedasticity only (even asymptotically).  
◦ Since the homoskedasticity assumption often needs to be relaxed in non-binary dependent variable 

models as well, this is not a huge shortcoming, but it is important at a minimum to interpret the test 
statistics from a LPM with caution.



More on policy analysis and program 
evaluation
When natural scientists perform lab experiments to test their theories, they take two groups of 
subjects (“mice”) that are initially the same.
◦ Then they randomly assign some of the mice to a treatment group and the rest to a control group.  
◦ Afterward they observe both groups and compare them to see if there is any difference.
◦ If the two groups differ, it can reasonably be inferred that the treatment caused the change.

Example:  two identical groups of mice.  One group is given a vaccine expected to protect against 
Anthrax.  Then both groups are given a lethal dose of Anthrax.
◦ If the group given the treatment is in better health (“not dead”) afterward than the other group, the 

scientists conclude that the vaccine protected them from it and caused them to stay alive.



Policy analysis and program evaluation
One wouldn’t even need regression analysis to test the hypothesis that survival is independent 
of the treatment.
◦ The researcher could just test for a difference in sample survival proportions (like you learn about in 

introductory statistics class).  

If you had a research question in which assignment to treatment (“participation in the 
program”) was random, only conditional on some other factors, you would want to control for 
the other factors and use regression analysis such as:

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛽𝛽0 + 𝛿𝛿0𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑢𝑢.

The challenge in estimating 𝛿𝛿0 lies in successfully conditioning on (“controlling for”) other 
factors that are correlated with participation (partic).  

This challenge is almost universal in empirical economics.  It takes the following forms.



Program evaluation challenges
Participation is voluntary, and there is selection bias resulting from self-selection.
◦ A voluntary review session is more likely to be attended by “good” students, exaggerating its effect on 

subsequent test scores.
◦ Alcohol use is more likely among discouraged individuals, exaggerating its effect (if it has one) on labor 

market outcomes, e.g., unemployment.

Binary variables that are not self-selected, such as gender and race, can still be correlated with 
confounding variables.
◦ Parents’ incomes,
◦ Quality of schooling,
◦ Classmates’ (“peer”) effects on school performance,
◦ Parents’ expectations and human capital investment decisions.

Cross-sectional regressions that fail to control for relevant differences between groups will 
produce biased estimates and misleading evidence about discrimination.



Discrete dependent variables
It should not be surprising that the interpretation of regression coefficients when y is binary 
generalizes to cases in which y takes on a small number of integer values.  Common examples:  
◦ number of children, 
◦ games won during a football season, 
◦ patents filed, and 
◦ job offers received.  

It’s important to remember that the coefficients estimate the change in the conditional 
expectation of y for a one unit increase in x.

In the following (textbook) example, the effect of education on number of children is (-0.079).  
◦ This can be interpreted through the familiar lens by imagining 100 women obtaining a marginal year of 

schooling each.  The fertility would be predicted to fall by about 8 children as a result.



Discrete dependent variables example



Discrete dependent variables 
(concluded)
Once again there are estimation methods better suited to analyzing discrete (“limited”) 
dependent variables that are discussed later in the text, but this is an easy-to-interpret 
extension of regression analysis that can be useful for grasping the relationships between 
variables.



Conclusion
It’s hard to overemphasize how much qualitative information is out there and (potentially) 
subject to econometric analysis.

Incorporating qualitative variables into OLS as independent variables can be don easily using 
indicator variables.
◦ And it presents no significant problems for estimation or inference.

Binary and other discrete (taking on a limited number of values) variables can hypothetically be 
used as dependent (“y”) variables, too, but there are better methods than OLS for estimation.
◦ See Chapter 17 in Wooldridge.
◦ When a binary variable is used as the y variable in OLS, the coefficients have a “change in probability” 

interpretation, under the Linear Probability Model.

Policy analysis using an indicator for exposure to a program is one of the most important tasks 
empirical economists do, but
◦ estimating the effects is fraught with self-selection bias.



(optional) Restrictions when testing 
ordinal regressors
You want to know whether all the 
marginal effects are the same in both 
specifications.  So think about 
comparing them, a là the table.

If all the delta coefficients are 
perfectly proportional to 𝛾𝛾1, then you 
might as well estimate the model with 
fewer parameters and just enter the 
ordinal variable as a regressor.
◦ If they’re not, then the  model fits 

better with indicators and you should 
reject the null hypothesis.

Marginal Effect

Change Ordinal Regressor Indicators for 
Each Category

𝐹𝐹𝐹𝐹𝐹𝐹 = 5
→ 𝐹𝐹𝐹𝐹𝐹𝐹 = 4

−𝛾𝛾1 𝛿𝛿4

𝐹𝐹𝐹𝐹𝐹𝐹 = 5
→ 𝐹𝐹𝐹𝐹𝐹𝐹 = 3

−2𝛾𝛾1 𝛿𝛿3

𝐹𝐹𝐹𝐹𝐹𝐹 = 5
→ 𝐹𝐹𝐹𝐹𝐹𝐹 = 2

−3𝛾𝛾1 𝛿𝛿2

𝐹𝐹𝐹𝐹𝐹𝐹 = 5
→ 𝐹𝐹𝐹𝐹𝐹𝐹 = 1

−4𝛾𝛾1 𝛿𝛿1



Restrictions when testing ordinal 
regressors (continued)
So your null hypothesis is that the indicators’ marginal effects are the same as the marginal 
effects of 1, 2, 3, and 4 unit changes in the ordinal measure.  I.e.,

𝐻𝐻0:𝛿𝛿1 = −𝛾𝛾1;𝛿𝛿2 = −2𝛾𝛾1;𝛿𝛿3 = −3𝛾𝛾1; 𝛿𝛿4 = −4𝛾𝛾1.
𝐻𝐻1: 𝐻𝐻0 is not true.

◦ The negative signs are due to the fact that my base category is the highest category.
◦ The example in Wooldridge’s text differs by omitting the lowest category.

◦ If my informal theory is correct, 𝛾𝛾1 will be positive, and all the 𝛿𝛿𝑗𝑗 will be negative, so the negative signs are necessary to make the 
marginal effects the same sign.

Back.
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