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Introduction

There is a lot of (relevant) information in data about the elements observed that isnot in
guantitative form.

This chapter explores how that information can be used to create variables that can be used in a
regression.

These methods are powerful because without them one would have to confine his methods to
explicitly quantitative variables like age, income, years of schooling, high school GPA, et al.
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Describing qualitative information

Qualitative information can be turned into quantitative information in a straightforward way,
using binary coding for “yes” and “no”.

For example “is a certain person in the sample female?”
yes female — x = 1 and no not female - x = 0.

According to the above example, the variablex can be called a binary variable for whether or
not each observation is female.

> Synonymous terms you will often hear for it are indicator variable, zero-one variable, or (regrettably)
dummy variable.




Indicator variables

It is fairly simple to assign zeroes and ones to observations, based on dichotomous gender.

For the sake of clarity, though, it is vital to name the variable according to whether female = 1
or female = 0. The interpretation of the variable (and its estimated regression coefficient)
depends on it; call the variable “female” if female = 1 and call it “male” if female = 0.

Sometimes you will find data with indicator variables already generated.

> Sometimes it will be purely in “string” format, i.e., a column of cells containing the words “male” or
“female”.

° Sometimes it comes in numerical format that is not binary, to allow for other information, such as
instances in which the survey respondent did not answer the question.

° The data set on the next slide (shown in STATA Data Editor view) illustrates these possibilities.



Qualitative information example
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Qualitative information example
(continued)

state is a string variable; sex is a binary variable that has value labels that decode
the numbers into words (the blue font).

> A “male” cell is selected, and the formula bar says that the value is “1”.

> For a “female” cell the value would be “2”, so this data does not have a (0,1) indicator
for sex yet. To generate one in STATA one would merely use the syntax:

quietly tabulate [categorical var], generate(name of indicator).
In this example, it would look like:
quietly tabulate sex, gen(sex01 )

from which STATA would generate 2 new variables, “sex01_1" and “sex01_2.

> Then rename them, “male” and “female” using STATA’s rename command, e.g.,
rename sex01 1 male.



Indicator variables (continued)

Often in data, qualitative information can take more than 2 possible “values,” e.g., a sample of

Midwesterners may report their state of residence as: Wisconsin, Minnesota, lllinois, lowa,
Indiana, Ohio, or Michigan.

Generating indicator variables for state will result in one new variable per value, i.e., 7 for the
Midwest.

> |t would be 50 if you had the whole U.S. (excluding Washington, D.C., and the territories).
> Tabulating the variable “race3” in this data would result in 3 indicators: “white”, “black” and “other”.




Qualitative information example
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Indicator variables (concluded)

For a given observation, only 1 of the indicators equals 1; all the others equalzero.

° Indicator variables break the qualitative information into mutually exclusive categories.

° Using “tabulate” to create indicator variables generalizes even to variables that have ordinal
significance, such as a schooling variable that takes on values such as: “no H.S. diploma”, “H.S.
diploma/GED”, “Some college”, “College degree”.

° But the interpretation is more difficult when the variable being tabulated has ordinal significance or
takes on many values or both.

We will begin with a very straightforward case in which neither of those complications exists.



Regression with a single binary
independent variable

Indicator variables can enter a regression model the same way as continuous (x) variables. E.g.,

the female indicator in a wage regression would be modeled:
wage = By + 6ofemale + fieduc + u.

The coefficient on female is interpreted as the difference in conditional expectations between
when female = 1 (woman) and when female = 0 (man).

&y = E(wageleduc, female = 1) — E(wage|educ, female = 0) or

§o = E(wageleduc, female) — E(wage|educ, male).



The effect of a binary indicator variable

wage

wage = (B, + 8,) + B, educ




A single binary independent variable
(continued)

If §, < 0, the results show that, for a given level of education, women earn less than men in the
sample.

The common coefficient on education for women and men restricts each group to having the
same returns to additional schooling.

But a non-zero coefficient on female means that women have a different intercept than men.

1. The intercept for observations with female = 0 is merely 3y,
2. For observations with female = 1, the intercept shifts by &,

3. The slope of the wage-schooling relationship does not change; for both sexes they are
parallel.



A single binary independent variable
(continued)

In this estimation, men are the base group, i.e., the group that maintains the generic intercept
term, S,.

° It would be redundant to include the indicator for “male” in the regression and attempt to estimate
another parameter that 8, already estimates.

Furthermore it would be impossible because female and male are perfectly collinear, as a result
of being mutually exclusive and exhaustive.

male + female = 1 © male = 1 — female,

means male is a perfect linear function of female and has no independent variation in the
sample with which to estimate its coefficient.



A single binary independent variable
(continued)

Including additional non-indicator variables in the regression does not alter the above
interpretation of the indicator coefficient.

The practical significance of §, is measuring whether comparably productive (!) men and
women earn the same wages, or whether discrimination (or something else?) could contribute

to wage disparity.

This could be inferred from the test of statistical significance:

Hy: 6o = 0 (both paid the same),H;: &, # 0.



Aside: interpreting the gender
indicator’s coefficient

As with non-binary regressors, an empiricist must ask whether Assumption MLR.4 is realistic: “is
the binary variable of interest correlated with the error term?”

In the example of gender in the labor market, the models in the text do not condition on the
attributes of the jobs chosen by each gender.

° Compensating Differentials theory predicts that workers are paid more for working jobs that involve
disamenities such as unpleasant (noisy, dirty, et al.) conditions, injury risk, or strenuous schedules.

> If men are more likely to select into unpleasant jobs than comparably-skilled women, their higher wages
reflect payments for tolerating disamenities, rather than discrimination.




A single binary independent variable
(concluded)

Similar considerations should be made in the other textbook examples, as well as any instance in
which the assignment to groups is the result of an agent’s choice, e.g., owning a personal
computer (example 7.2) and participating in a job training program (7.3).

The responsible empiricist ought to ask whether “more ambitious students are more likely to
voluntarily purchase a PC than less ambitious students?” and whether “a firm is more likely to
pursue a training subsidy if it was already planning to perform a lot of worker training?”

> A PCis probably a valuable input to success in college, and incentivizing training with a grant is likely to

cause more training, but when the selection is non-random, it is impossible to know how much of the
estimated effect is causal and how much is from the self-selection bias.

The promise of OLS in answering questions like these (so called program evaluations) lies in
controlling for enough other factors that the estimated effect () of program participation
(participation=1) can be interpreted as evidence of a causal effect.




Interpreting coefficients on binary
variables when the LHS is log(y)

As with non-binary regressors, the coefficient on a binary variable has a percentage change
interpretation.

For the example of the female indicator in the wage regression, the results (next slide) from
estimating [7.9] show a coefficient estimate of §, = —0.2965.

Using the approximation to % change, this is a 29.65% wage penalty forwomen.

> Since it is a fairly large change, however, the approximation is likely inappropriate. The % penalty from a
discrete change of one unit (0 to 1) in the female indicator is:

%Alwage = 100[exp(—0.296511) — 1] = —25.66%.



Effects when the LHS is log(y) example

. reg Ilwage female educ c.exper##c.exper c.tenure##c.tenure

Source ss df MS Number of obs = 526
F(C 6, 519) = 68.18
Model 65. 3791009 & 10.3965163 Prob > F = 0.0000
Residual 82.9506505 519 .159827343 R-squared = 0.4408
Adj R-squared = 0.4343
Total 148.329751 525 . 28253286 Root MSE = .39978
Iwage Coef. std. Err. t P=|t| [95% Conf. Interwval]
female -.296511 . 0358055 -8.28 0.000 -. 3068524 -.2261696
educ 0801967 0067573 11.87 0.000 0669217 .0934716
exper 0294324 - 0049752 5.92 0.000 - 0196585 0392063
C.exper#
C .exper —-.0005827 0001073 -5.43 0.000 —-. 0007935 -.0003719
tenure 0317139 0068452 4.63 0.000 . 0182663 0451616
c.tenur ed
c.tenure —. 0005852 0002347 -2.49 0.013 -. 0010463 -.0001241
Cons 416691 0989279 4.21 0.000 .222342% .6110394




Using binary variables for multiple
categories

It is not significantly more challenging to include multiple sets of indicator variables in the same

regression model.
> On the subject of discrimination, a researcher may also be interested in whether white workers are paid

a premium compared to similar (in terms of education, experience, tenure) non-white workers.

An indicator for nonwhite is in the data, and it can be added individually to the regression.

It can also be interacted with another indicator, e.g., female.

The model would become:

lwage
= By + Breduc + frexper + Pzexper? + B, tenure + PBstenure? + B female + B,nonwhite

+ fgfemale » nonwhite + u.



Binary variables for multiple categories
(continued)

Now it is possible to estimate 4 different intercepts for each combination of female and
nonwhite, with white males being the base group (5,).

> The intercept for white females is (8¢ + B¢);

° for non-white males it is (5, + £-), and

> for non-white females it is (5y + ¢ + 7 + Bs)-




Binary variables for multiple categories
(continued)

This isn’t exactly how the concept is presented in Wooldridge, but it is equivalent to generating
indicators for each combination of female and nonwhite and using any 3 (=4-1) of them in the
OLS estimation.

° Even though the interaction of indicators isn’t covered until Chapter 7.4, it’s easier to explain this as a
special case of an interaction instead of thinking about exotically-defined groups.

This is a convenient opportunity to explain how to tell STATA to regress using indicator
variables—without generating the indicators in the data set—using factor variables (fvvarlist).

To perform the regression described above, the syntax (Wooldridge data file wagel.dta) is:

reg lwage i.female##i.nonwhite educ c.exper#tic.exper c.tenure#ic.tenure.



Interaction of indicator variables example

. reg Ilwage 1i.Temale##i .normwhite educ c.exper##c.exper c.tenuref##c.tenure

Source 55 df Ms Number of obs = 526
F( 8, 517) = 51.43
Model 65.7314291 8 8.21642564 Prob > F = 0.0000
Residual 82.5983223 517  .159764647 R-squared = 0.4431
Adj R-squared = 0.4345
Total 148.329751 525 .28253286 Root MSE = .39971
Iwage Coef. std. Err. t P=|t]| [95% Conf. Imterwvall]
1. female -.280087 4 0377878 -7.41 0.000 -.3543239 -.2058509
1.nomwhite .0439158 0792357 0.55 0.580 -.1117477 .1995793
femal e
nomwhite
11 -.1607668 1162072 -1.38 0.167 -.3890631 0675296
educ 0804544 0067983 11.83 0.000 0670988 .0938101
exper 0302209 . 005005 6.04 0.000 .0203882 .0400536
C .exper#
C .exper —-.0005998 0001079 -5.56 0.000 -.0008118 -.0003878
tenure .0316791 0068528 4.62 0.000 .0182163 .0451419
C.tenure#
Cc.tenure -.000587 2 0002349 -2.50 0.013 -.0010487 —-.0001257
cons 4037444 . 10087 26 4.00 0.000 . 2055739 .6019149




Interaction of indicator variables example
(continued)

The regression output implies estimated wage penalties (compared to white men) of:
100[exp(—0.2800874) — 1] = —24.43% for white women,
100[exp(—0.39693838) — 1] = —32.69% for non — white women.

The comparison between white and non-white men is not statistically significant in this
sample—and opposite in sign compared to the prediction of discrimination.

Neither is there a statistically significant difference (|t| = 1.38) between white and non-white
women, but it does run in the predicted direction.




Binary variables for multiple categories
(concluded)

The emphasis, in terms of STATA programming, is on the use of the ‘1.” in the factor variables
coding, in contrast to the “c.” used for interactions between continuous variables.

ou:=7”
I-

interacts combinations of values of the variables instead of simply interacting the variables
themselves (exper and tenure in the present example).

o7
I

Use of “i.” will automatically drop one category as the base. In this case, it dropped the “right”
one as specified in our model.

° If it drops the “wrong” one, you may specify the base category by adding “b#” to the prefix, where # is
the category you want to be the base.



Incorporating ordinal information by
using binary variables

The variables examined so far have been categorical (merely classifying by group) and has not
had ordinal significance, i.e., meaningful order.

> The ratio scale variables used so far have meaningful order, but they also have a meaningful zero value

(educ=0 implies zero years of education) and differences (12 years is 1 more than 11 years) are
meaningful.

In this discussion, the focus is on variables like credit (bond) rating, subjective well-being, and
the so-called “temperature” scales of approval/disapproval.

> They are ordinal in the sense that a higher rating indicates “more” of something (creditworthiness, well-

being, approval), but a one unit increase is difficult to interpret and is unlikely to be uniformly
meaningful across the scale of measurement.

> E.g., is the difference between “strongly disapprove” and “disapprove” the same as the difference
between “disapprove” and “neither approve nor disapprove”?



Ordinal information (continued)

To ameliorate this shortcoming, indicator variables for each level (excluding one as the base) of

an ordinal variable are added to the regression model to capture the non-constant effects of
each change.

For concreteness a survey may ask respondents to approve or disapprove of the Federal
Reserve’s monetary policy according to the scale:

5, strongly approve
4, approve
FRa = { 3, neither disapprove nor approve
2, disapprove
L strongly disapprove



Ordinal information (continued)

A regression of the respondents’ investment behavior on Fed approval level (and other not
explicitly listed factors) would appear as:

invest = oy + 61FRal + 6,FRa2 + 63FRa3 + §,FRa4 + other factors,
where “strongly approve” is the omitted (base) level.

The coefficients are simple to interpret.
> &, is the effect on investment of diminishing one’s approval of the Fed from strong to regular.

> &5 captures the effect of diminishing it to the point of indifference, and so on.



Ordinal information (continued)

A special case of this method emerges when you reconstruct the indicator variables into the
ordinal variable FRa.

FRa = FRal + 2FRa2 + 3FRa3 + 4FRa4 + 5FRa5.

Estimating the model with FRa as ratio scale,
invest = By + y1FRa + other factors,

is tantamount to placing restrictions on the coefficients in the more flexible model with
indicators.

° The restrictions are: 6, = —2y4, 83 = —3y4, and so forth.

As usual the validity of those restrictions can be tested using the appropriate F statistic.



Ordinal information (concluded)

Occasionally an ordinal variable takes on too many values to include indicators for each one.

When this occurs, they can be broken down into a smaller number of groups that are larger in
Size.

E.g., if approval is rated on a 1-100 scale, the ratings can be broken down into groups of 10
instead of putting in 99 indicators.




Interactions of binary and ratio variables

Now you have encountered interactions between two ratio scale variables (thinkeducation and
experience), two indicator variables (female and nonwhite).

One more possibility is the interaction of a ratio variable with an indicator variable.

> In the wage-by-gender example, such an interaction would enable the researcher to see if there is a
difference in the slopes of the two genders’ education profiles as well as in the intercepts.

> This can be accomplished by including an interaction term between female and educ:

lwage = B, + 6ofemale + [educ + 6, female * educ + u.



Interactions of binary and ratio variables

(continued)

Now (B, + Bieduc) is the wage-schooling
locus for men, and the wage-schooling
locus for women is (By + 6o +

wage

wage

(a) educ (b) educ




Interactions of binary and ratio variables
(continued)

The first panel (a) depicts a case where women’s intercept and slope are smaller than men’s:
g < 0and 6; < 0.

In panel (b), the intercept is lower but the “return to schooling” (slope) is actually greater for
women: 8y < 0 and §; > 0.

Either of the above hypotheses can be tested individually, or they can be tested jointly to
determine if men and women have different wage-schooling loci:

Hy: 69 = 6; = 0; Hy: atleast one delta coefficient is nonzero.




Binary-ratio interactions in Stata

To perform the regression in STATA, thefvvarlist syntax to put in the regression command is:

i.binaryvar##c.nonbinaryvar.

The estimates using the wagel.dta data set yield a rejection of Hy with high confidence, and it is
probable that the rejection comes from a difference in intercepts (the difference in slopes is
small in magnitude and not even close to significant on its own).

> See results on the next slide for the regression syntax and syntax for the (lazy man’s) F test.




Binary-ratio interactions in Stata

. reg lwage i.fTemale##c.educ c.exper##c.exper c.

tenured#c.tenure

Source 55 df MS Number of obs = 526

F( 7, 518) = 58.37

Model 65.4081534 7 9.34402192 Prob > F = 0.0000

Residual 82.921598 518 .160080305 R-squared = 0.4410

Adj R-squared = 0.4334

Total 148.329751 525 . 28253286 Root MSE = 4001

Twage Coef. std. Err. t P>|t] [95% Conf. Imterwval]

1. female -.2267886 .1675394 -1.35 0.176 -.5559289 .1023517

educ .0823692 . 0084699 9.72 0.000 . 0657296 .0990088
female#

c.educ

1 -.0055645 .0130618 -0.43 0.670 -.0312252 0200962

exper .0293366 . 0049842 5.89 0.000 .019545 .0391283
C.exper#

C .exper -.0005804 . 0001075 -5.40 0.000 -. 0007916 -.0003691

tenure .0318967 006864 4.65 0.000 .018412 .0453814
C.tenur e#

c.tenure -.00059 . 0002352 -2.51 0.012 -.001052 -.000128

cons . 388806 . 1186871 3.28 0.001 . 1556388 6219732

. testparm 1.female 1.female#c.educ

(1) 1.female =0
(2) 1l.female#c.educ = 0
F( 2’

518) 34.33

0.0000

Prob > F




Testing for differences in regression
functions across groups

To take interactions involving binary variables to their logical conclusion, consider a model in
which all the other explanatory variables are interacted with the group indicator.

° Wooldridge describes an example of a regression used to determine whether male and female college
students perform the same in college:

cumgpa
= Lo + 6ofemale + (B, + 61 female)sat + (S, + 6, female)hsperc
+ (B3 + d3female)tothrs + u.

The hypothesis being tested is whether all thefemale coefficients are simultaneously zero:

Hy: 86y = 6, = 6, = 63 = 0; H: atleast one delta is nonzero.



Performing the test in Stata

. reg cumgpa 1.Temale##c.( sat hsperc tothrs) if spring==1

Source 55 df MS Number of obs = 366
F(C 7, 358) = 34.95
Model 53.5391808 7 7 .6484544 Prob > F = 0.0000
Residual 78.3545052 358 .218867333 R-squar ed = 0.4059
Adj R-squared = 0.3943
Total 131.893686 365 .361352564 Root MSE = .46783
cumgpa Coef. std. Err. t P>|t| [95% Conf. Interwvall
1. female -.3534862 . 4105293 -0.86 0.390 -1.160838 -4538659
sat .0010516  .0001811 5.81 0.000 . 0006955 .0014078
hsperc -.0084516 . 0013704 -6.17 0.000 -.0111465 -.0057566
tothrs .0023441  .0008624 2.72 0.007 . 0006482 .0040401
female#c.sat
1 .0007506 . 0003852 1.95 0.052 -6.88e-06 .0015081
femal e#
c.hsperc
1 -.0005498 . 0031617 -0.17 0.862 -.0067676 0056681
femal e#
c.tothrs
1 -.0001158 . 0016277 -0.07 0.943 -.0033169 .0030852
_cons 1.480812 .2073336 7.14 0.000 1.073067 1.888557

. testparm 1.female 1.female#c.sat 1.female#c.hsperc 1.female#c.tothrs

(1) 1l.female =0

(2) 1.female#c.sat =0
( 3) 1.female#c.hsperc

( 4) 1.female#c.tothrs

0
0

F( 4, 358)
Prob > F

8.18
0.0000

. testparm 1l.female#c.sat 1.female#c.hsperc 1.female#c.tothrs

(1) 1.female#c.sat =0
( 2) 1.female#c.hsperc
( 3) 1.female#c.tothrs

F( 3, 358)
Prob > F




Testing for differences across groups
(continued)

The F test of this hypothesis rejects the null with a high level (>99.99%) of confidence.
> Testing the joint significance of only the three interaction terms, however, does not reject the null.

This recommends modeling the relationship using an indicator for female as the only difference
between the genders (F = 1.53).

Stata can easily accommodate interactions between an indicator variable and a large set of
other explanatory variables using fvvarlist.

The syntax just replaces a single interaction variable with a parenthesis that contains a list:

i.binaryvar##c.(list of interaction variables).



A binary dependent variable: the linear
orobability model

Technically there is nothing that prevents an empiricist from estimating a regression using OLS
with a binary dependent variable, i.e., y € {0,1}.

There is an entire Chapter in Wooldridge (17) devoted to superior ways to handle a dependent
variable with such limitations, but estimating it by OLS yields easy-to-interpret results and is
easier to explain to non-economists than other methods such as probit.




The linear probability model

Setting up the usual regression model with k regressors and a binary outcome, y,
Yy = Bo + f1X1 + [oxy + faxz+... +frx; + 1,

could be used to analyze qualitative outcomes like:
° whether or not an individual participates in the labor force,

> whether spouses will dissolve (divorce) their marriage,

o if a firm will innovate (as measured by patent filings) or not.




The linear probability model (continued)

Very little changes about the estimation, but the interpretation of the results requires attention.
° The non-stochastic part of the model represents the expectation of y, conditional on all the x.

When y is binary, though, its conditional expectation equals the probability that y = 1:
E(ylx) = Pr(y = 1|x).

Coefficients are usually interpreted as marginal effects on the conditional expectation of y.
> This is still true when y is binary, but the effects now have the “change in probability” interpretation.

> Since the model is linear in parameters and OLS estimates constant rates of change in probability, this is
called the linear probability model.

The effect of the jt" regressor measures
8 = 0Pr(y = 1|x)

J 6x]

or without calculus notation, APr(y = 1|x) = ﬁijj.




Linear probability model example

. reg inlf mwifeinc educ c.exper##c.exper age kidslt6e kidsgeb

source S5 df MS Number of obs = 753
F( 7, 745) = 38.22
Mode | 48. 8080578 7 6.97257969 Prob > F = 0.0000
Residual 135.919698 745 .182442547 R-squar ed = 0.2642
Adj R-squared = 0.2573
Total 184 .727756 752 .245648611 Root MSE = .42713
inlf Coef. std. Err. t P=|t| [95% Conf. Imterwval]
mwifeinc .0034052 . 00144385 -2.35 0.019 —-. 0062488 —-.0005616
educ .0379953 007376 5.15  0.000 .023515 .0524756
exper .0394924 . 0056727 6.96 0.000 .0283561 0506287

C .exper#
C .exper 0005963 . 0001848 -3.23 0.001 -. 0009591 —-.0002335
age .0160908 . 0024847 -6.48 0.000 —-. 02096386 -.011213
kids 1t6 .2618105 .0335058 -7.81 0.000 -.3275875 -.1960335
kidsgeb .0130122 .013196 0.99 0.324 —-. 0128935 .0389179
_cons .5855192 .154178 3.80 0.000 . 2828442 .8881943




Linear probability model example

(continued)

To visualize the effect, consider the model
of labor force participation as a function of
education and other factors.

> The estimated relationship is graphed here.

You can see that the slope of the line is
constant and equal to the estimated
coefficient from the regression results
(previous slide).

probability
of labor
force
participation

5

-.146

= e = m

slope = .038

\

educ




The linear probability model (continued)

These features, however, are the undoing of the linear probabilitymodel.

° On the graph you will notice that the model predicts a negative (!) probability of participation (for very
low levels of education).

> This is less of a problem compared to the other end of the distribution, in which college graduate
women (with observed covariates) are predicted to participate in the labor force with probability:

Pr(y = 1|x) = 0.5855 — 16.73 * 0.0034 + 16 * 0.38 + 27 * 0.0395 — 272 % 0.0006 — 45 *
0.0161 + 3% 0.013 = 1.083 > 1.

> The covariates are: age 45, 3 children over 6 years old, 27 years of experience, non-wife income of
16.73 (1000s), and 16 years of education.



The linear probability model (continued)

So the linear probability model allows for fitted values that are impossible, but this can still be
useful if you don’t take the results literally.

° Consider the model’s prediction to mean merely that a 45 year old college graduate with no small
children is highly likely to work.

> But there are 17 women in the sample for which the model predicts probability greater than 1 (and 16
with less than 0).

The constant marginal effects are equally uncomfortable. The possibility of changing probability
by more than 1 in either direction is absurd, but technically possible, in the linear probability
model:

o this is what would happen by going from 0 to 4 children under 6.
APr(y =1|x) = —0.2618 * 4 = —1.048.



The linear probability model (continued)

Even if this was not a risk, the restriction that the effects are constant over the distribution ofx
is unrealistic.

Going from 0 to 1 child would likely reduce the probability of participation severely, but having a
second child would not reduce the probability of working much more,

° i.e., a mother who is going to stay home to care for children is probably doing it already for the first
child.




Inference about the linear probability
model

The problem of impossible fitted values can be ameliorated using an indicator function that
assigns a 0 or 1, based on whether the fitted value is at least 0.5.

~ N\ ~ O) yi < Ol5
., = . > . . L. . = ~
Vi =109 2 0.5] 5. t.3; {1, 9, > 05

Along with the observed values of y, this set of predictions suggests a way of testing the
goodness-of-fit: the percentage correctly predicted.

n

%CP =1t ) [Ty + (1= 7)1 =y

i=1



The linear probability model (concluded)

One more problem with the linear probability model is that it automatically violates the
homoskedasticity assumption because the variance of the dependent variable, and therefore
the error term, depends on x:

Var(y|x) = Pr(y = 1]|x) = [1 — Pr(y = 1]|x)].

This presents a problem for inference because the test statistics presented so far have been
justified under homoskedasticity only (even asymptotically).

> Since the homoskedasticity assumption often needs to be relaxed in non-binary dependent variable
models as well, this is not a huge shortcoming, but it is important at a minimum to interpret the test
statistics from a LPM with caution.




More on policy analysis and program
evaluation

When natural scientists perform lab experiments to test their theories, they take two groups of

subjects (“mice”) that are initially the same.
° Then they randomly assign some of the mice to a treatment group and the rest to a control group.

o Afterward they observe both groups and compare them to see if there is any difference.
° If the two groups differ, it can reasonably be inferred that the treatment caused the change.

Example: two identical groups of mice. One group is given a vaccine expected to protect against
Anthrax. Then both groups are given a lethal dose of Anthrax.

> If the group given the treatment is in better health (“not dead”) afterward than the other group, the
scientists conclude that the vaccine protected them from it and caused them to stay alive.



Policy analysis and program evaluation

One wouldn’t even need regression analysis to test the hypothesis that survival is independent

of the treatment.
> The researcher could just test for a difference in sample survival proportions (like you learn about in
introductory statistics class).

If you had a research question in which assignment to treatment (“participation in the
program”) was random, only conditional on some other factors, you would want to control for
the other factors and use regression analysis such as:

outcome = Py + dypartic + other factors + u.

The challenge in estimating § lies in successfully conditioning on (“controlling for”) other
factors that are correlated with participation (partic).

This challenge is almost universal in empirical economics. It takes the following forms.



Program evaluation challenges

Participation is voluntary, and there is selection bias resulting from self-selection.

> A voluntary review session is more likely to be attended by “good” students, exaggerating its effect on
subsequent test scores.

> Alcohol use is more likely among discouraged individuals, exaggerating its effect (if it has one) on labor
market outcomes, e.g., unemployment.

Binary variables that are not self-selected, such as gender and race, can still be correlated with
confounding variables.

° Parents’ incomes,

° Quality of schooling,

> Classmates’ (“peer”) effects on school performance,

° Parents’ expectations and human capital investment decisions.

Cross-sectional regressions that fail to control for relevant differences between groups will
produce biased estimates and misleading evidence about discrimination.



Discrete dependent variables

It should not be surprising that the interpretation of regression coefficients wheny is binary
generalizes to cases in which y takes on a small number of integer values. Common examples:

° number of children,

° games won during a football season,
° patents filed, and
° job offers received.

It's important to remember that the coefficients estimate the change in the conditional
expectation of y for a one unit increase in x.

In the following (textbook) example, the effect of education on number of children is (-0.079).

> This can be interpreted through the familiar lens by imagining 100 women obtaining a marginal year of
schooling each. The fertility would be predicted to fall by about 8 children as a result.



Discrete dependent variables example

. reg children age educ electric

Source Ss df MS Number of obs = 4358
F( 3, 4354) = 1862.83

Model 12090.395 3 4030.13167 Prob > F = 0.0000
Residual 9419.6371 4354 2.16344444 R-squared = 0.5621
Adj R-squared = 0.5618

Total 21510.0321 4357 4.93689055 Root MSE = 1.4709
children Coef. Std. Err. t P=|t| [95% Conf. Interwval]
.;jge 1769991 .0027291 04.86 0.000 . 1716486 -182 3496

educ -.0787507 . 0063195 -12.46 0.000 -.09114 -.0663614
electric -.3617579 . 0680316 -5.32 0.000 -.4951345 -.2283813
_cons =2.071091 .0947413 -21.86 0.000 -2.256832 -1.88535




Discrete dependent variables
(concluded)

Once again there are estimation methods better suited to analyzing discrete (“limited”)
dependent variables that are discussed later in the text, but this is an easy-to-interpret
extension of regression analysis that can be useful for grasping the relationships between
variables.




Conclusion

It’s hard to overemphasize how much qualitative information is out there and (potentially)
subject to econometric analysis.

Incorporating qualitative variables into OLS as independent variables can be don easily using
indicator variables.

> And it presents no significant problems for estimation or inference.

Binary and other discrete (taking on a limited number of values) variables can hypothetically be
used as dependent (“y”) variables, too, but there are better methods than OLS for estimation.

> See Chapter 17 in Wooldridge.

° When a binary variable is used as the y variable in OLS, the coefficients have a “change in probability”
interpretation, under the Linear Probability Model.

Policy analysis using an indicator for exposure to a program is one of the most important tasks
empirical economists do, but

o estimating the effects is fraught with self-selection bias.



(optional) Restrictions when testing
ordinal regressors

You want to know whether all the Marginal Effect
marglpal gffects are tche same in both Change Ordinal Regressor | Indicators for
specifications. So think about
: . Each Category
comparing them, a la the table.
FRa =5 —Y1 04
If all the delta coefficients are — FRa = 4
pgrfectly proport.lonal to y¢, then you FRq = 5 2y, 5
might as well estimate the model with —~ FRq = 3
fewer parameters and just enter the
ordinal variable as a regressor. FRa =5 —31 0
° If they’re not, then the model fits — FRa =2
better with indicators and you should FRa =5 —4y, 01
reject the null hypothesis. —- FRa=1




Restrictions when testing ordinal
regressors (continued)

So your null hypothesis is that the indicators” marginal effects are the same as the marginal
effects of 1, 2, 3, and 4 unit changes in the ordinal measure. l.e.,

Hy: 61 = —y1; 62 = —2y1; 03 = —3y1; 04 = —4v1.
Hi: Hyis not true.
> The negative signs are due to the fact that my base category is the highest category.
° The example in Wooldridge’s text differs by omitting the lowest category.

> If my informal theory is correct, y; will be positive, and all the §; will be negative, so the negative signs are necessary to make the
marginal effects the same sign.

Back.
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