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Introduction
Most of the remaining lessons on OLS address problems with the 4th Gauss-Markov assumption 
(the error term’s mean independence from the regressors):

𝐸𝐸 𝑢𝑢 𝑥𝑥1, . . . , 𝑥𝑥𝑘𝑘 = 𝐸𝐸 𝑢𝑢 = 0.

Examples of how this assumption can be compromised without omitting a relevant variable:  
◦ functional form misspecifications and 
◦ measurement error.  

How functional form specifications (for x variables) may be tested and the properties of OLS are 
under measurement error.

Measurement error illustrates a more general practical problem of missing or imprecise data, 
and it can compromise the randomness of the sample (MLR.2).  It merits attention because of 
this risk.

The proxy variable solution to the omitted variable problem is discussed.
◦ The last textbook chapter on OLS with cross-sectional data, so it serves to close that discussion.
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Functional form misspecification
Technically the mean independence of the error term is violated if there is a non-linear 
relationship, e.g., quadratic or logarithmic, between x and u that the empiricist fails to estimate.  

The problem is comparatively easy to solve, though, if a bit labor intensive.

The F test allows the researcher to test sets of exclusion restrictions, and he could test the 
coefficients on several non-linear, say quadratic, x terms to verify whether they are statistically 
significant.



Functional form misspecification 
example (from examples 8.3 & 9.1)

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 𝛽𝛽0 + 𝛽𝛽1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽𝛽2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽3𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛2 + 𝛽𝛽4𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽𝛽5𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝862 + 𝛽𝛽6𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
+ 𝛽𝛽7𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽8𝑖𝑖𝑖𝑖𝑖𝑖862 + 𝛽𝛽9𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛽𝛽10ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑢𝑢, where

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≡ times arrested in 1986,
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≡ proportion prior arrests → conviction ≈ Pr conviction arrest ,

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≡ average prior sentence conviction , months,
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≡ months in prison during 1986,
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ≡ quarters employed during 1986,
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≡ legal income in 1986 $100s ,

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≡ indicator for black,
ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≡ indicator for latino.



Functional form misspecification 
(continued)
This model, estimated using individual level data on arrestees, enables one to test the joint 
significance of the three square terms embodied in the hypothesis:

𝐻𝐻0: 𝛽𝛽3 = 𝛽𝛽5 = 𝛽𝛽8 = 0.

This algorithm for inclusion and testing of expanded non-linear terms should lead to a 
specification with an accurate specification of the regressors.

The eventual specification ought to satisfy the regression specification error test (RESET), 
though, to confirm this.



RESET
The premise for using RESET is adding non-linear functions of the regression’s fitted values ( �𝑦𝑦) to 
the model because the fitted values are functions of the regressors, after all.

So one might estimate:
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1+. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝛿𝛿1 �𝑦𝑦2 + 𝛿𝛿2 �𝑦𝑦3 + 𝑢𝑢, where

�𝑦𝑦 is the fitted value from the regression of y only on 𝑥𝑥1 through 𝑥𝑥𝑘𝑘.

If the null hypothesis that the regression is correctly specified is correct, then the square and 
cube of the fitted values should be insignificant and 𝐻𝐻0: 𝛿𝛿1 = 𝛿𝛿2 = 0.
◦ In this example the test could be performed as an F statistic for those two exclusion restrictions, with 

joint significance indicating a model misspecification.



Functional form misspecification 
(continued)
The RESET does not offer much guidance about the particular misspecification in 
a model, though.

For instance, it doesn’t tell you whether the specification should be
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝑢𝑢, or

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥1 + 𝛽𝛽2 ln 𝑥𝑥2 + 𝑢𝑢.



Functional form misspecification 
(concluded)
Using the logic of the RESET, the fitted values of the incorrect specification ought to be 
insignificant in the correct specification, i.e., 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝜃𝜃1 �𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑢𝑢,

should not reject the null that 𝜃𝜃1 = 0, where �𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙 is fitted from the model estimated in logs.

If this (Davidson-MacKinnon) test passes and the alternative fails, i.e.,
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥1 + 𝛽𝛽2 ln 𝑥𝑥2 + 𝜃𝜃1 �𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑢𝑢, and 𝜃𝜃1 ≠ 0,

it is evidence in favor of the regression in levels.
◦ But passing each test is not mutually exclusive—nor is failing each test.
◦ So the outcome may not be decisive.



Using proxy variables for unobserved 
explanatory variables
What does an empiricist do when the relevant information that is not in the data set?  This is a 
ubiquitous problem in economics because collecting and organizing accurate and precise data is 
expensive and time-consuming.
◦ Also many relevant variables are exceedingly difficult to measure and observe in the first place.  

Nonetheless omission of relevant variables biases OLS estimates, so a solution to unobserved 
variables is crucial.

Sometimes one can identify a proxy variable to substitute for a relevant unobserved variable.

What is a proxy variable?  The glossary in the text defines it as:
◦ “An observed variable that is related but not identical to an unobserved explanatory variable in multiple 

regression analysis.”

So what are the properties of a good proxy variable?

http://www.reddit.com/r/movies/comments/1eipwt/lets_name_some_actors_who_are_the_poor_mans/


Proxy variables
A proxy variable is related to the unobserved variable that it “proxies”.
◦ The relationship can be modeled linearly like a regression with a stochastic part and a non-stochastic 

part.  
◦ If 𝑥𝑥3 is a proxy for the unobserved variable, 𝑥𝑥3∗, the relationship might look like:

1 𝑥𝑥3∗ = 𝛿𝛿0 + 𝛿𝛿3𝑥𝑥3 + 𝑣𝑣3.

The “error,” 𝑣𝑣3, represents the non-identical relationship between the proxy and unobserved.  

𝛿𝛿3 captures the relationship between them; if 𝛿𝛿3 = 0, 𝑥𝑥3 is not a good proxy.

Substituting (1) into a regression of y on 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3∗ shows how the proxy may improve 
estimates that would otherwise suffer from omitted variable bias. 

2 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3∗ + 𝑢𝑢.



Proxy variables (continued)
1 and 2 → 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3 𝛿𝛿0 + 𝛿𝛿3𝑥𝑥3 + 𝑣𝑣3 + 𝑢𝑢.

Rearranging some terms yields a new estimable model with different intercept and error:
3 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽3𝛿𝛿0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝛿𝛿3𝑥𝑥3 + 𝛽𝛽3𝑣𝑣3 + 𝑢𝑢 .

For consistent estimates of 𝛽𝛽1 and 𝛽𝛽2, which is usually the goal, MLR.4 must hold in (3).

The new error term, which Wooldridge calls “e”, must satisfy the requirements:
𝐸𝐸 𝑒𝑒 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 0, which is satisfied if,

𝐸𝐸 𝑢𝑢 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 𝐸𝐸 𝑣𝑣3 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 0.



Proxy variables (continued)
This is like saying that:
◦ a) the proxy would not belong in the actual regression if we could observe 𝑥𝑥3∗ (we wouldn’t need the 

proxy if we had the “real thing”) and 
◦ b) the proxy relationship (1) correctly omits 𝑥𝑥1 and 𝑥𝑥2.  

In the textbook example, 𝑥𝑥3 is an intelligence quotient (“IQ”), 𝑥𝑥1 and 𝑥𝑥2 are education and labor 
force experience, and IQ proxies for unobserved “ability”—a vague and difficult to measure 
concept that affects both wages and education.
◦ So one’s IQ score does not depend on education or work experience.
◦ Were the relationship between ability and IQ to depend on education or experience, the 2nd equality on 

the previous slide would not hold, and one could not estimate 𝛽𝛽1 and 𝛽𝛽2 consistently (or without bias).



Proxy variables (continued)
Also to economize on notation, the intercept and coefficient on 𝑥𝑥3 are collapsed into single 
parameters—which are all that can actually be estimated.

3 ⇔ 𝑦𝑦 = 𝛼𝛼0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛼𝛼3𝑥𝑥3 + 𝑒𝑒;

𝛼𝛼0 ≡ 𝛽𝛽0 + 𝛽𝛽3𝛿𝛿0 ,𝛼𝛼3 ≡ 𝛽𝛽3𝛿𝛿3, and 𝑒𝑒 ≡ 𝛽𝛽3𝑣𝑣3 + 𝑢𝑢.

Performing the regression above will not yield unbiased or consistent estimates of the 
coefficient on 𝑥𝑥3 (“IQ”) or the intercept, but generally they aren’t the variables of interest.  

If IQ is a “good” proxy (as defined above), you will get unbiased and consistent estimates of 
𝛽𝛽1 and 𝛽𝛽2.



Proxy variables (concluded)
Even if the proxy variable chosen is not perfect, the bias (inconsistency) in OLS may be better 
with than without the proxy.
◦ If IQ score increases with education and experience, it is straightforward to show the bias:

(1′) 𝑥𝑥3∗ = 𝛿𝛿0 + 𝛿𝛿1𝑥𝑥1 + 𝛿𝛿2𝑥𝑥2 + 𝛿𝛿3𝑥𝑥3 + 𝑣𝑣3.

It makes the regression, (3),
(3′) 𝑦𝑦 = 𝛼𝛼0 + 𝛽𝛽1 + 𝛽𝛽3𝛿𝛿1 𝑥𝑥1 + 𝛽𝛽2 + 𝛽𝛽3𝛿𝛿2 𝑥𝑥2 + 𝛼𝛼3𝑥𝑥3 + 𝛽𝛽3𝑣𝑣3 + 𝑢𝑢 .

Since 𝛽𝛽3, 𝛿𝛿1 and 𝛿𝛿2 would all probably be positive, the returns to education and experience 
would both still be biased upward unless 𝛿𝛿1 = 𝛿𝛿2 = 0.  
◦ The promise of this specification lies in controlling for ability “somewhat” with an imperfect proxy.
◦ And making the estimates of 𝛿𝛿1and 𝛿𝛿2 relatively small, reducing the error compared to the complete 

omission of ability.



Using a lagged dependent variable as a 
proxy
One clever use of proxy variables relies on the information observed by looking at the 
dependent variable y in a preceding time period.

When the outcome is correlated over time, e.g., “persistent” or “inertial,” 𝑦𝑦𝑡𝑡−1can be a proxy for 
omitted factors that are also persistent, yet unobserved.

Adding the lagged dependent variable as a proxy enables a researcher to be agnostic about 
what the unobserved variable is exactly, as long as it persistently explains y across time periods, 
i.e., in periods t and 𝑡𝑡 − 1. 



Using a lagged dependent variable as a 
proxy (continued)
Including 𝑦𝑦𝑡𝑡−1 as a proxy controls for “whatever made y higher or lower last period”.
◦ Whatever it is contributes to explaining variation in y in the present as well, and 𝑦𝑦𝑡𝑡−1 “controls” for it.  
◦ Conditioning on a lagged dependent variable enables you to interpret the effect of interest as follows.

In the crime rate example in the text, using 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑡𝑡−1 as a proxy for unobserved factors means 
that the effect of law enforcement spending is “holding previous year’s crime rate constant”—
which could certainly be a source of omitted variable bias (correlated with current crime rate as 
well as current law enforcement spending).



Properties of OLS under measurement 
error
Another empirical shortcoming frequently encountered is imprecisely measured variables.

We consider this issue successively for dependent and explanatory variables.



Measurement error in the dependent 
variable
Consider first a y variable that is measured noisily, i.e., with a stochastic error (“𝑒𝑒0”) around the 
measured values.

𝑒𝑒0 ≡ 𝑦𝑦 − 𝑦𝑦∗;𝑦𝑦∗is the right value, and 𝑦𝑦 is observed.

The “right” value, 𝑦𝑦∗, is what the economic agents actually act on, e.g., how many hours they 
work per week, their gross annual income, how many car trips they make per week.

It is observed with measurement error in the data, nonetheless 𝑦𝑦∗ is the basis for the population 
model:

𝑦𝑦∗ = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 +. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑢𝑢.



Measurement error in y (continued)
Using the observed value instead is equivalent to substituting in

𝑦𝑦∗ = 𝑦𝑦 − 𝑒𝑒0,

which adds to the error term:
𝑦𝑦 − 𝑒𝑒0 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 +. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑢𝑢,

⇔ 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 +. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑢𝑢 + 𝑒𝑒0.

This model is estimable, and it still consistent as long as 𝑒𝑒0 satisfies some conditions.
◦ Namely it must be mean independent of the regressors, i.e., it must satisfy the same requirements that 

u does, since it is now in the error term.



Measurement error in y (concluded)
If the two parts of the new error (𝑢𝑢 + 𝑒𝑒0) term are uncorrelated (a common assumption), the 
error now has larger variance:

𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑒𝑒2 > 𝜎𝜎𝑢𝑢2,

so the variance of the estimators is larger than in the absence of measurement error.

If 𝑒𝑒0 is uncorrelated with the regressors but has non-zero mean, it only biases the intercept.

The assumption that the measurement error is independent of the regressors is not always 
valid, though, and in those instances OLS is biased.



Measurement error in an explanatory 
variable
Were the measurement error problem to afflict an explanatory variable instead, the model 
would look as follows:

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1∗ + 𝑢𝑢; 𝑥𝑥1∗ = 𝑥𝑥1 − 𝑒𝑒1, where

𝑎𝑎1 is the measurement error and 𝐸𝐸 𝑒𝑒1 = 0.

Performing the regression (which is assumed to satisfy Assumptions MLR.1 through MLR.4) 
using the noisy measure entails estimating:

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1 𝑥𝑥1 − 𝑒𝑒1 + 𝑢𝑢 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝑢𝑢 − 𝛽𝛽1𝑒𝑒1.



Measurement error in an x variable 
(continued)
As with the dependent variable case, regardless of whether “the noise is uncorrelated with the 
signal,” the variance is larger with measurement error as well as the OLS standard errors:

𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑒𝑒𝑒2 > 𝜎𝜎𝑢𝑢2; 𝑢𝑢 and 𝑒𝑒1are uncorrelated.

If the noise is uncorrelated with the signal (𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥1∗, 𝑒𝑒1 = 0), the noise (measurement error) has to 
be correlated with the noisy measure.

If
𝑥𝑥1 = 𝑥𝑥1∗ + 𝑒𝑒1, and 𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥1∗, 𝑒𝑒1 = 0,

𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥1, 𝑒𝑒1 = 𝐸𝐸 𝑒𝑒1𝑥𝑥1∗ + 𝑒𝑒12 = 0 + 𝜎𝜎𝑒𝑒𝑒2 .



Measurement error in an x variable 
(continued)
This is called the classical errors-in-variables (CEV) scenario.
◦ And it produces negative covariance between the noisily-measured variable and the error term (as well 

as bias and inconsistency).
𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥1,−𝛽𝛽1𝑒𝑒1 = −𝛽𝛽1𝜎𝜎𝑒𝑒𝑒2 , but

since the inconsistency contains the coefficient, 𝛽𝛽1 can be factored out and the inconsistency 
expressed as a multiplicative constant (in the limit).

plim
𝑛𝑛→∞

𝛽̂𝛽1 = 𝛽𝛽1 −
𝛽𝛽1𝜎𝜎𝑒𝑒𝑒2

𝜎𝜎𝑥𝑥2
= 𝛽𝛽1 −

𝛽𝛽1𝜎𝜎𝑒𝑒𝑒2

𝜎𝜎𝑒𝑒𝑒2 + 𝜎𝜎𝑥𝑥∗2
= 𝛽𝛽1

𝜎𝜎𝑥𝑥∗2

𝜎𝜎𝑒𝑒𝑒2 + 𝜎𝜎𝑥𝑥∗2
< 𝛽𝛽1.



Measurement error in an x variable 
(concluded)
So the consequence of CEV is a downward (toward zero) bias in the estimate of 𝛽𝛽1, which is 
known as attenuation bias.
◦ Measurement error in one variable biases the estimates of the other regressors’ coefficients as well 

(except under very strong assumptions).

Finally the CEV scenario will often not hold.
◦ Suffice it to say that measurement error that is correlated with the true value also presents problems 

for OLS estimates, but showing their properties is more difficult than is appropriate for this class.

Whether measurement errors obey the CEV or not, there are (non-OLS) methods to solve the 
problem.  These must be postponed until a later chapter, though.



Missing data
The reality of empirical work in economics is that most data sources contain gaps (missing 
observations) for some variables of interest.
◦ At first this doesn’t sound like a big deal, but since the OLS minimand* is a mathematical function of all 

the variables for all observations, a missing value negates the whole observation.

Stata records missing values in its Data Editor with a “.”.  
◦ It automatically excludes any observations with a missing value of a variable in the regression you ask it 

to estimate.

If the nature of the missing data is random, this merely reduces the sample size, along with the 
problems for inference that come with a smaller (but still representative and random) sample. 

*Sum of squares of errors.



Nonrandom samples
Perhaps surprisingly sampling that depends on the regressors (either because of missing data or 
convenience sampling) is exogenous and creates no problems for Assumption MLR.2.
◦ Sampling probability that depends on an element’s value of an explanatory variable is not ideal, but the 

estimates are still unbiased and consistent because the regression model, once specified, holds for any 
subset of the population of interest.

The same is not true if sample selection is related to elements’ values of the dependent 
variable:  a case of endogenous sample selection.

This will lead to bias in the OLS estimates because:
𝐸𝐸 𝑦𝑦 𝒙𝒙 ≠ 𝐸𝐸 𝑦𝑦 𝒙𝒙,𝑦𝑦∗ , where 𝑦𝑦∗ determines sample selection probability.



Nonrandom samples (continued)
A common example, similar to the one in the textbook, is estimating labor supply elasticity.
◦ For employed individuals (𝑦𝑦 > 0), the wages are observed, but for non-employed individuals (𝑦𝑦 = 0) 

the wage they would earn is not observed (certainly not by an empiricist).
◦ Labor supply has an intensive and an extensive margin.  And excluding the missing observations 

amounts to conditioning on people who have either comparatively high wage offers, low reservation 
wages or both.

◦ The basic problem is that labor supply elasticity among those observed working is unlikely to represent 
the elasticity for the whole population.

Once again there are methods that deal with selection issues like this, but they are beyond the 
purview of OLS and not discussed here.



Outliers and influential observations
OLS is sensitive to extreme values of one or more variables (outliers) because it is based on 
variances and covariances, and a single (few) “large” observed deviation(s) from a variable’s 
mean can dominate these calculations.

When excluding one or several such observations changes the OLS estimates in practically 
significant ways, a researcher should be concerned about those observations.

This is particularly dangerous in a small sample.



Outliers and influential observations 
(continued)
This topic is contained under the chapter on “Data Issues” because very often outliers result 
from mistakes in data recording or decoding.

Examples:  
◦ 1) data entry is susceptible to typographical errors, such as hitting a key twice or entering a “7” instead 

of a “1”, 
◦ 2) consider the question from the NSCW* below about years of labor force participation.

Years of experience is recorded as the actual number if observed, but a code (998 or 999, 
respectively) is used if the respondent “doesn’t know” or refuses to answer.  
◦ If labor market experience is a regressor and includes several (technically missing) observations, they 

will immediately turn into large outliers:  998 or 999 years of experience! 

*National Study of the Changing Workforce.



Question from the NSCW



CLEAN YOUR DATA!!!
The life-saving lesson from this is that the first thing you must do with data is “clean it up”:  
◦ identify outliers by looking at the summary statistics, 
◦ figure out why you have outliers by using the codebook*, and change them to missing or correct them 

as the situation warrants.

Do not risk the disgrace of estimating and presenting results based on erroneous (“unclean”) 
data!!!  This is the equivalent of a surgeon not washing his hands before an operation.** 

*Many surveys have a separate (sometimes lengthy) downloadable document explaining the coding of each variable at what survey 
question it is based on.  This is called the codebook.

**For more read:  Hamermesh, Daniel S.  2000.  “The Craft of Labormetrics.”  Industrial and Labor Relations Review, Volume 53, Number 
3:  363-380.



Outliers and influential observations 
(continued)
You may also encounter examples of outliers that have nothing to do with data coding.
◦ Maybe they are correctly observed but pulled from a distribution that is prone to extreme values.  
◦ Maybe the observations do not really belong to the population of interest.  

What to do about cases like that?  Depends on project-specific factors:
◦ how much the estimates change when the outliers are included (excluded), 
◦ what the convention in the related literature is, et al.

Depending on these factors, the outliers may be included in or excluded from estimation.



Outliers and influential observations 
(concluded)
In STATA the leverage of each observation can be computed after a regression by typing:

predict [newvar], hat.

And an instructive graphical diagnosis of the role of outliers comes from plotting the leverage 
(“how far each observation is from the means”) against the squares of the residuals.  

This is accomplished in STATA by typing lvr2plot after running a regression.
◦ The idea is to identify observations that have a lot of leverage and large residual, as well as those that 

have a lot of leverage and a small residual.
◦ The former may simply not be appropriate for including in the population of interest (unusual and 

model predicts poorly), and the latter may exert undue influence on the estimates and excluding them 
would be useful to see if the results hold in their absence.



Conclusion
This is only an overview of the issues involved in turning a raw data set into a clean, useable 
product.

For the most part the exercises in this class use very clean data with few or no major issues.

We could spend a whole semester studying data issues and what can be done about them, but 
that is not the main purpose of this course.

In your daily life as an empiricist, however, these issues will occupy more of your time than 
running regressions and presenting the results.

This is the underappreciated “behind-the-scenes” work that is a prerequisite for a high quality 
research project.



Lags and leads
The terminology, “lagged,” refers to the same variable observed in a past period.

A lagged variable is usually denoted with a subscript, e.g., 𝑡𝑡 − 1, to distinguish it from the 
current period observation (which is subscripted with a t).

The analogous term for a future period is called a “lead”.

The chapters on time series regressions will elaborate on this in more detail.

Back.



Selection probability
Wooldridge Chapter 17 has a nice model of sample selection, i.e., the observation is in the data 
set if all its values are observed for all relevant variables:

𝑠𝑠𝑖𝑖 = �1 if all observed
0 otherwise.

The whole model gets interacted with this binary variable when performing the regression 
calculations (variance, covariance), dropping out the observations for which 𝑠𝑠𝑖𝑖 = 0.

𝑦𝑦𝑖𝑖𝑠𝑠𝑖𝑖 = 𝛽𝛽0𝑠𝑠𝑖𝑖 + 𝛽𝛽1𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑢𝑢𝑖𝑖



Selection probability (continued)
The analog of Assumption SLR.4, here, is that the expectation of the error term, conditional on 
x, is zero:

𝐴𝐴1 𝐸𝐸 𝑢𝑢𝑖𝑖𝑠𝑠𝑖𝑖 𝑥𝑥𝑖𝑖 = 0,

where you can assume u is a well-behaved error that satisfies SLR.4 (𝐸𝐸 𝑢𝑢 𝑥𝑥 = 0).

So satisfying (A1) comes down to whether
𝐸𝐸 𝑢𝑢 𝑥𝑥, 𝑠𝑠 = 1 = 𝐸𝐸 𝑢𝑢 𝑥𝑥, 𝑠𝑠 = 0 = 𝐸𝐸 𝑢𝑢 𝑥𝑥 .

If the first equality does not hold, you have endogenous sample selection and a bias in the 
estimates of the 𝛽𝛽s.

Back.
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