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Introduction 
 So far this class has analyzed data that are either cross-sectional or time series. 

 Now it will examine data that have both dimensions.  These come in two forms: 
◦ multiple (“pooled”) cross sections from different time periods and  
◦ the same cross section (“panel”) observed in multiple time periods. 

 The difference is that pooling cross sections means different elements are sampled in each 
period, whereas panel data follows the same elements through time. 

 The objective is to explore what problems can be solved with such “two dimensional” data that 
is difficult to do with a single cross section. 



Outline 
 Pooling Independent Cross Sections Across Time. 

 Policy Analysis with Pooled Cross Sections. 

 Two-Period Panel Data Analysis. 

 Policy Analysis with Two-Period Panel Data. 

 Differencing with More than Two Time Periods. 

  

  



Pooling independent cross sections 
across time 

 For many surveys, a cross-sectional sample is drawn periodically; the book uses the example of 
the Current Population Survey (CPS). 
◦ Each CPS sample is quite large in its own right, but when they are pooled it becomes a very large 

sample—with all the attendant benefits in terms of precision. 

 As long as we’re talking about cross sections drawn in periods that aren’t too far removed from 
one another, 
◦ i.e., in which the relationships among variables are unlikely to have changed notably,  

 pooling them doesn’t introduce much of a problem statistically either. 

 Yes the distribution of the variables may change over time, but this can typically be accounted 
for in a regression model by estimating the coefficient on a time period indicator, e.g., year. 



Pooling independent cross sections 
across time (continued) 

 A year indicator variable would be constructed: 

 

𝑦𝑦𝑦𝑦𝑦𝑦𝑟𝑟𝑡𝑡 = �1, &observation is from year 𝑡𝑡
0, &otherwise.  

 When it is of interest, a year indicator can also be interacted with another “x” variable of 
interest to examine whether its effect changed in that year compared to the other period(s) in 
the sample. 



The Chow test for structural change 
across time 

 As you have seen with Chapter 7.4 (in the context of differences across groups), interaction with 
an indicator can be taken to the extreme by estimating coefficients on interactions between the 
year indicator and all the variables in the model. 

 Their joint significance (F test) would be evidence to reject the null hypothesis that the model 
does not change between two periods. 
◦ There are exercises in the Wooldridge book that apply this to more than two time periods as well. 



Policy analysis with pooled cross sections 
 Empiricists are fortunate, on occasion, to observe natural experiments. 
◦ These occur when some economic agents are exposed to an exogenous change in their incentives as a 

result of a locally enacted policy, for example, while others are not so exposed. 

Natural experiments aren’t quite as good as laboratory experiments because the treatment 
(exposure to the policy change) may not be applied to a group that is ex ante identical to the 
control group, as it is in a laboratory. 

That’s where the usefulness of multiple time periods comes in. 



Policy analysis with pooled cross sections 
(continued) 

 To accurately measure the causal effect of some treatment,  
◦ e.g., a state-wide ban on text messaging while driving,  

 a researcher would wish to compare a measure (y) of roadway safety in two hypothetical states: 

 
𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑦𝑦𝑐𝑐 𝑦𝑦𝑒𝑒𝑒𝑒𝑦𝑦𝑐𝑐𝑡𝑡 = 𝑦𝑦1,𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡−𝑏𝑏𝑦𝑦𝑏𝑏 − 𝑦𝑦1,𝑐𝑐𝑝𝑝𝑐𝑐𝑏𝑏𝑡𝑡𝑦𝑦𝑟𝑟𝑒𝑒𝑦𝑦𝑐𝑐𝑡𝑡𝑐𝑐𝑦𝑦𝑐𝑐, 

 i.e., the difference between what happened and what would have happened if the state(s) had 
not enacted the texting ban.  



Policy analysis with pooled cross sections 
(continued) 

 Since this latter counterfactual is not observable, a researcher would be tempted to substitute 
observations of other states that did not enact texting bans, estimating: 

 
𝑝𝑝𝑏𝑏𝑐𝑐𝑦𝑦𝑟𝑟𝑜𝑜𝑦𝑦𝑜𝑜 𝑜𝑜𝑑𝑑𝑒𝑒𝑒𝑒 = 𝑦𝑦1,𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡−𝑏𝑏𝑦𝑦𝑏𝑏 − 𝑦𝑦0,𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡−𝑏𝑏𝑦𝑦𝑏𝑏. 

 The difference is between two different groups where the non-banning states are the control 
group (0) and the banning states are the treatment group (1). 

 This strategy may or may not be sound, depending on how comparable the two groups were 
prior to group (1) enacting their laws. 



Policy analysis with pooled cross sections 
(continued) 

 If the term in the 2nd parentheses is zero (as it is in lab experiments), the non-ban states provide 
a good counterfactual for what would have happened in the absence of the ban in the 
treatment states.  
◦ Then the cross sectional differences could be interpreted as causal effects. 

 If that is not the case (and it frequently is), two cross-sections can help solve the problem. 

 Label the above difference, 
𝑦𝑦1,𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡−𝑏𝑏𝑦𝑦𝑏𝑏 − 𝑦𝑦0,𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡−𝑏𝑏𝑦𝑦𝑏𝑏 ≡ 𝑝𝑝𝑏𝑏𝑐𝑐𝑦𝑦𝑟𝑟𝑜𝑜𝑦𝑦𝑜𝑜 𝑜𝑜𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡, and 

 
𝑦𝑦1,𝑝𝑝𝑟𝑟𝑦𝑦−𝑏𝑏𝑦𝑦𝑏𝑏 − 𝑦𝑦0,𝑝𝑝𝑟𝑟𝑦𝑦−𝑏𝑏𝑦𝑦𝑏𝑏 ≡ 𝑝𝑝𝑏𝑏𝑐𝑐𝑦𝑦𝑟𝑟𝑜𝑜𝑦𝑦𝑜𝑜 𝑜𝑜𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑟𝑟𝑦𝑦. 



Difference in difference (DD) estimation 
 The difference between these two differences (you see the origin of the strategy’s name) is: 

 
𝐷𝐷𝐷𝐷 ≡ 𝑦𝑦1,𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡−𝑏𝑏𝑦𝑦𝑏𝑏 − 𝑦𝑦0,𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡−𝑏𝑏𝑦𝑦𝑏𝑏 − 𝑦𝑦1,𝑝𝑝𝑟𝑟𝑦𝑦−𝑏𝑏𝑦𝑦𝑏𝑏 − 𝑦𝑦0,𝑝𝑝𝑟𝑟𝑦𝑦−𝑏𝑏𝑦𝑦𝑏𝑏 . 

 This expression subtracts any pre-existing differences between the two groups from the 
observed post-treatment difference. 
◦ So it “controls for” how different the two groups are prior to the treatment. 



DD estimation (continued) 
 The DD estimator makes it much more plausible that it estimates the object of interest: 

𝐷𝐷𝐷𝐷 = 𝑦𝑦1,𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡−𝑏𝑏𝑦𝑦𝑏𝑏 − 𝑦𝑦1,𝑐𝑐𝑝𝑝𝑐𝑐𝑏𝑏𝑡𝑡𝑦𝑦𝑟𝑟𝑒𝑒𝑦𝑦𝑐𝑐𝑡𝑡𝑐𝑐𝑦𝑦𝑐𝑐 − 𝑦𝑦0,𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡−𝑏𝑏𝑦𝑦𝑏𝑏 − 𝑦𝑦0,𝑝𝑝𝑟𝑟𝑦𝑦−𝑏𝑏𝑦𝑦𝑏𝑏

+ 𝑦𝑦1,𝑐𝑐𝑝𝑝𝑐𝑐𝑏𝑏𝑡𝑡𝑦𝑦𝑟𝑟𝑒𝑒𝑦𝑦𝑐𝑐𝑡𝑡𝑐𝑐𝑦𝑦𝑐𝑐 − 𝑦𝑦1,𝑝𝑝𝑟𝑟𝑦𝑦−𝑏𝑏𝑦𝑦𝑏𝑏  

 
⇔ 𝐷𝐷𝐷𝐷 = 𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑦𝑦𝑐𝑐 𝑦𝑦𝑒𝑒𝑒𝑒𝑦𝑦𝑐𝑐𝑡𝑡 + ∆1 − ∆0 . 

 As long as there is no other confounding change happening in either group, it is plausible that 
the last two terms are both zero in expectation and the differences in differences estimator 
captures the treatment effect. 

 The key assumption is that, in the absence of the treatment, the treatment places would have 
changed at the same rate as the control places. 



Regression DD 
 In a regression context, the estimator would appear in the model, 

 
𝑦𝑦 = 𝛽𝛽0 + 𝛿𝛿0𝑜𝑜𝑑 + 𝛽𝛽1𝑜𝑜𝑑𝑑 + 𝛿𝛿1𝑜𝑜𝑑 ∗ 𝑜𝑜𝑑𝑑 + 𝑦𝑦𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟, 

 

𝑜𝑜𝑑 = �1, &post treatment
0, &otherwise,  

 

𝑜𝑜𝑑𝑑 = �
1, &treatment group
0, &control group.  



Regression DD (continued) 
 In terms of parameters, the pre-treatment and post-treatment differences would be: 

 
∆𝑦𝑦𝑜𝑜𝑑=0 = 𝛽𝛽1 and ∆𝑦𝑦𝑜𝑜𝑑=1 = 𝛽𝛽1 + 𝛿𝛿1. 

 And DD would be: 

 
𝐷𝐷𝐷𝐷 = ∆𝑦𝑦𝑜𝑜𝑑=1 − ∆𝑦𝑦𝑜𝑜𝑑=0 = 𝛽𝛽1 + 𝛿𝛿1 − 𝛽𝛽1 = 𝛿𝛿1. 



Policy analysis using pooled cross 
sections (concluded) 

 When expressed in its regression form, the DD estimator has more flexibility,  
◦ i.e., one could include other control variables that vary through time but the power of multiple cross-

sections is evident merely from comparing a set of 4 averages (pre and post, treatment and control). 

 To estimate the effect of a texting ban, one could simply average the rates of motor vehicle 
crashes in states that enacted bans and those that did not and compare the two differences (pre 
and post). 



Two-period panel data analysis 
 Depending on the nature of the data used, the texting ban DD estimation could serve as an 
example of pooled cross sections or panel data analysis. 

 If the unit of observation was individual drivers, the data might consist of random samples from 
two different states in two consecutive years—and the drivers in the sample need not be the 
same in both periods. 
◦ The outcome measure (y) may be the number of collisions each respondent was involved in, in a year. 
◦ This data would be classified as pooled cross sections. 



Two period panel data analysis 
(continued) 

 However automobile collisions are officially recorded by law enforcement agencies, and the 
statistics for each county and state are usually readily available. 

 If the unit of observation was states instead of drivers, the data would be classified as 
longitudinal or panel—in which the same elements (states) are observed over time. 

 DD analysis could be conducted in the same fashion, but now the empiricist would run into 
sample size issues, since there are only 50 states and only a small fraction (1?  2?) of them are 
likely to experiment with a law contemporaneously. 

 Consequently there isn’t much variation in the treatment indicator, and the estimates are likely 
to be quite imprecise. 
◦ Nonetheless it illustrates the difference between pooled cross sections and panel data. 



Two period panel data analysis 
(continued) 

 In general one of the biggest advantages of using panel data, compared using one or more non-
identical cross sections, is its negation of fixed effects. 

 Variables that are specific to the elements (individuals, cities, firms, schools, et al.) and are 
“fixed” (do not change or change very slowly) over time belong to this category. 

 In an individual-level data set these would include: 
◦ Gender and race. 
◦ Intrinsic ability, e.g., motivation, intelligence, other unobservable, but crystallized, skills. 
◦ Characteristics of your ancestors or birth place. 



Two period panel data analysis 
(continued) 

 These are distinguished from variables that vary across individuals and over time. 

 The two categories can be distinguished in the regression model by subscripts. 

 Fixed effects are only indexed by an i (specific to the individual) because they do not vary over 
time (𝑦𝑦𝑑𝑑,𝑡𝑡=0 = 𝑦𝑦𝑑𝑑,𝑡𝑡=1 = 𝑦𝑦𝑑𝑑). 

 Other variables are indexed with the individual as well as which time period in which they are 
observed.  Examples of these include: 
◦ age, years of labor market experience. 
◦ marital status, number of children, current place of residence. 
◦ years of schooling (except maybe among older individuals),  
◦ occupation and industry in which one works. 



Two period panel data analysis 
(continued) 

 So a regression with fixed effects (fixed effects model) would look like this: 
𝑦𝑦𝑑𝑑𝑡𝑡 = 𝛽𝛽0 + 𝛿𝛿0𝑡𝑡 + 𝛽𝛽1𝑥𝑥𝑑𝑑𝑡𝑡 + 𝑦𝑦𝑑𝑑 + 𝑐𝑐𝑑𝑑𝑡𝑡; for simplicity 𝑡𝑡 ∈ 0,1 , where 

 𝛽𝛽0 is intercept for period 0, and the intercept for period 1 is 𝛽𝛽0 + 𝛿𝛿0, 𝑥𝑥𝑑𝑑𝑡𝑡 are variables that vary 
in the cross section and over time, and 𝑐𝑐𝑑𝑑𝑡𝑡 is the idiosyncratic error. 

 The usefulness is that x variables of interest are correlated with the fixed effects and also that 
the fixed effects are not observed.   

 So in an OLS regression, the fixed effects are relegated to the composite error term: 
𝑜𝑜𝑑𝑑𝑡𝑡 ≡ 𝑦𝑦𝑑𝑑 + 𝑐𝑐𝑑𝑑𝑡𝑡. 



Two period panel data analysis 
(continued) 

 Here is where the really cool part comes in. 
◦ Since 𝑦𝑦𝑑𝑑 does not change over time, it is negated when you take the first difference the model, resulting 

in the first-differenced equation, 
∆𝑦𝑦𝑑𝑑𝑡𝑡 ≡ 𝑦𝑦𝑑𝑑𝑖 − 𝑦𝑦𝑑𝑑𝑖 = 𝛿𝛿0 + 𝛽𝛽1∆𝑥𝑥𝑑𝑑𝑡𝑡 + 𝑦𝑦𝑑𝑑 − 𝑦𝑦𝑑𝑑 + ∆𝑐𝑐𝑑𝑑𝑡𝑡 = 𝛿𝛿0 + 𝛽𝛽1∆𝑥𝑥𝑑𝑑𝑡𝑡 + ∆𝑐𝑐𝑑𝑑𝑡𝑡, 

 where ∆𝑥𝑥𝑑𝑑𝑡𝑡 ≡ 𝑥𝑥𝑑𝑑𝑖 − 𝑥𝑥𝑑𝑑𝑖. 

 Differencing turns the sample from two cross sections into a single cross section, i.e., two 
observations are necessary to form one difference (technically we could drop the subscript t).   

 But now the fixed effects have been negated and no longer appear in the model. 



Two period panel data analysis 
(continued) 

 The differenced model can be estimated by OLS, with the resulting estimator of 𝛽𝛽1 known as the 
first-differenced estimator (𝛽𝛽�𝐹𝐹𝐷𝐷).   
◦ The properties of unbiasedness and consistency will prevail as long as both values of x are uncorrelated 

with both idiosyncratic errors, i.e., 
𝐸𝐸 𝑥𝑥𝑑𝑑𝑖 − 𝑥𝑥𝑑𝑑𝑖 𝑐𝑐𝑑𝑑𝑖 − 𝑐𝑐𝑑𝑑𝑖 = 0. 

 This may or may not be a good assumption. 
◦ After all the value of x in the latter period could respond to a particularly severe shock (large or small 
𝑐𝑐𝑑𝑑𝑖) in the former period, inducing such correlation. 

 But there are plenty of instances in which this assumption is:  plausible,  
◦ much better than the one required to use a single cross-section, and  
◦ useful for resolving omitted variables bias. 



Two period panel data analysis 
(continued) 

 An underappreciated fact about panel data analysis is that there has to be temporal variation in 
x for 𝛽𝛽1 to be identified! 
◦ For instance if the unit of observation is states and a national law is passed between periods 0 and 1, 
∆𝑥𝑥𝑑𝑑𝑖 = 1 for all states; there is no variation from which to estimate the coefficient. 

◦ What the research design needs is local laws enacted only by a subset of places within the country. 

 Inference based on estimating a first-differenced model by OLS depends on homoskedasticity, 
which is nothing new. 
◦ The issues raised by, and solutions suggested to remedy violation of homoskedasticity, however, have 

already been covered in Chapter 8. 



Two period panel data analysis 
(concluded) 

 First differencing can also accommodate more than 2 time periods, as well as a whole vector of x 
variables, as in multiple OLS. 

 To generalize the model to k regressors, it would look like: 

 
𝑦𝑦𝑑𝑑𝑡𝑡 = 𝛽𝛽0 + 𝛿𝛿0𝑡𝑡 + 𝛽𝛽1𝑥𝑥𝑑𝑑𝑡𝑡𝑖+. . .𝛽𝛽𝑘𝑘𝑥𝑥𝑑𝑑𝑡𝑡𝑘𝑘 + 𝑦𝑦𝑑𝑑 + 𝑐𝑐𝑑𝑑𝑡𝑡;𝑑𝑑 ≥ 𝑑. 

 
◦ As in Example 13.6 in Wooldridge, more than 2 periods can be useful for estimating finite distributed lag 

(FDL) models (covered in Chapter 10), in which lagged values of the regressors enter the model as well 
as contemporary ones. 



Organizing panel data 
 Earlier I alluded to data as a “spreadsheet” with variables as columns and observations as rows.   

 A unique question posed by panel data is whether the data should be organized as “long” or 
“wide”. 

 Data stored in the “long” format feature time as a variable, differentiating each observation of 
an individual from the others. 



“Long” data storage 
 It is called “long” because the 
number of observations equals 
(assuming the panel is “balanced”) 
n*T:  the cross-sectional sample 
size times the length of the time 
series. 

 There is one observation per 
combination of i and t, 
◦ i.e., a long list of observations. 

Person (“i”) Year (“t”) Gender (1=“Male”)  Age (Years) 

1 2010 1 20 

1 2011 1 21 

. . .        

n 2010 0 36 

n 2011 0 37 



“Wide” data storage 

 By contrast the “wide” format for storing panel data stores each period for time-variant 
variables as a separate variable and does not have a separate variable for time, itself. 

 The same data set from the last slide would look like this in wide format. 

 It is called “wide” because the length of the list is now merely n.   

 But there are columns for each value of t for each variable that varies over time, e.g., 
◦ Age2010 and Age2011 are separate variables in the wide format. 

Person (“i”) Gender (1=“Male”)  Age2010 Age2011 

1 1 20 21 

. . .        

n 0 36 37 



Organizing panel data (continued) 
 Remarkably Stata has commands for converting a data set from long to wide (and back).  To 
demonstrate this using the lowbirth.dta file that accompanies the text, the following code 
would convert the data from long to wide. 

 use "[Location of your data followed by \]LOWBRTH.DTA", clear 

 This is state-level data with T=2 and 𝑡𝑡 ∈ {1987, 1990}. 

 egen id=group(stateabb) 

 This generates a numerical id variable that takes values unique to each state. 

 drop cafdcprc clpcinc clphysic clowbrth cinfmort clafdcpy cafdcinc clbedspc cpovrate cafdcpsq 
clphypc clpopul 



Organizing panel data (continued) 
 This gets rid of all the differenced variables that are only observed for the 2nd period 
◦ and which we could easily re-generate with the difference operator (beyond the scope of this tutorial). 

 reshape wide lowbrth- lpcinc lphysic afdcpay- lafdcpay beds- lbedspc povrate afdcpsq physicpc 
lphypc lpopul, i(id) j(year) 

 The command is called “reshape”. 
◦ The next input is what kind of data you want to turn it into, i.e., “wide” because the data is already 

“long”. 
◦ Then you input a list of all the x variables, i.e., time variant ones. 
◦ Finally the options include designations of the cross sectional index (“i”) and time index (“j”) variables. 



Output using Stata’s “reshape” command 



Organizing panel data (concluded) 
 All the x variables are expanded to T (=2) and given suffixes specific to the years to which they 
correspond. 

 Were you to encounter the data set in the wide format and wish to convert it to long, the 
command for doing so would be: 

 reshape long lowbrth infmort afdcprt popul pcinc physic afdcprc d90 lpcinc lphysic afdcpay 
afdcinc lafdcpay beds bedspc lbedspc povrate afdcpsq physicpc lphypc lpopul, i(id) j(year), 

 with the only notable differences being that “long” has replaced “wide” as the desired format 
and all of the variables must be listed individually. 

 The long format is usually preferable because it enables you to use the “xt” settings in Stata, 
which make using lags, leads and differences easier, as well as performing fixed effects 
regressions generally. 



Policy analysis with two-period panel 
data 

 Performing a program evaluation, i.e., measuring the effect of a policy, with panel data can be 
performed like Differences in Differences (DD). 

 The major advantage of using panel data is the non-necessity of aggregating observations to 
make temporal differencing relevant. 
◦ The agents are already observed before and after the program implementation, so differencing of the 

data can be done at the “micro” level.   

 Furthermore participation being involuntary, e.g., because of a law applying to everyone within 
a county or state, or because participation is assigned by a lottery, is no longer a requisite. 



Policy analysis with two-period panel 
data (continued) 

 Participation in the program is allowed to be correlated with individuals’ fixed effects because 
the fixed effects will be negated by differencing. 

 Examples:   
◦ More (less) productive firms can be more likely to participate in a job training program without biasing 

the differenced model’s estimates of training’s effect on productivity. 
◦ States with more (less) prevalence of drunk driving can be more likely to enact drunk driving laws 

without biasing the differenced model’s effect of laws on traffic fatalities. 
◦ In a study measuring the effect of a voluntary personal finance class on saving behavior, the 

participation can be positively (negatively) correlated with individuals’ pre-class frugality without 
biasing the differenced model’s effect on saving. 



Policy analysis with two-period panel 
data (concluded) 

 A model that enables a researcher to overcome unobserved fixed effects by differencing is: 
𝑦𝑦𝑑𝑑𝑡𝑡 = 𝛽𝛽0 + 𝛿𝛿01 𝑡𝑡 = 𝑑 + 𝛽𝛽1𝑝𝑝𝑟𝑟𝑝𝑝𝑔𝑔𝑑𝑑𝑡𝑡 + 𝑦𝑦𝑑𝑑 + 𝑐𝑐𝑑𝑑𝑡𝑡, where 

 
1 𝑡𝑡 = 𝑑  is an indicator function for the 𝑑nd period, and 
𝑝𝑝𝑟𝑟𝑝𝑝𝑔𝑔𝑑𝑑𝑡𝑡 is the indicator for participation 𝑝𝑝𝑟𝑟𝑝𝑝𝑔𝑔𝑑𝑑𝑡𝑡 = 1 . 

 Assuming that participation occurs for a subset of the sample and only in period 2, estimating 
the differenced model, 

∆𝑦𝑦𝑑𝑑𝑡𝑡 = 𝛿𝛿01 𝑡𝑡 = 𝑑 + 𝛽𝛽1∆𝑝𝑝𝑟𝑟𝑝𝑝𝑔𝑔𝑑𝑑𝑡𝑡 + ∆𝑐𝑐𝑑𝑑𝑡𝑡, 

 would yield an estimate of 𝛽𝛽1 that is unbiased by program participation’s correlation with 𝑦𝑦𝑑𝑑. 



Differencing with more than two time 
periods 

 The method of differencing can be generalized to 𝑑𝑑 ≥ 𝑑 periods, primarily by accounting for 
intercepts specific to each time period, i.e., 

𝑦𝑦𝑑𝑑𝑡𝑡 = 𝛿𝛿1 + �𝛿𝛿𝑡𝑡1[𝑡𝑡𝑑𝑑𝑡𝑡𝑦𝑦 = 𝑡𝑡]
𝑑𝑑

𝑡𝑡=𝑑

+ �𝛽𝛽𝑗𝑗𝑥𝑥𝑑𝑑𝑡𝑡𝑗𝑗

𝑘𝑘

𝑗𝑗=1

+ 𝑦𝑦𝑑𝑑 + 𝑐𝑐𝑑𝑑𝑡𝑡. 

 The strict exogeneity assumption (“FD.4” in Wooldridge appendix) must also be generalized to 
include independence between each combination of time period: 

𝐹𝐹𝐷𝐷. 4 → 𝐸𝐸 𝑐𝑐𝑑𝑑𝑡𝑡 𝑥𝑥𝑑𝑑𝑐𝑐𝑗𝑗,𝑦𝑦𝑑𝑑 = 0,∀ 𝑗𝑗, 𝑡𝑡, 𝑐𝑐. 



Differencing with more than two time 
periods (continued) 

 Along with FD 1-3 (model specification, random sampling, and the rank condition), this is what is 
necessary for the first difference estimator to be unbiased and consistent. 
◦ It is consistent under an even weaker version of FD.4. 

 Inference about first differenced estimates can be complicated by the possibility that the errors 
(∆𝑐𝑐𝑑𝑑𝑡𝑡) in the transformed model can be serially correlated, e.g., 

 
𝐸𝐸 ∆𝑐𝑐𝑑𝑑𝑑 ∗ ∆𝑐𝑐𝑑𝑑𝑖 = 𝐸𝐸 𝑐𝑐𝑑𝑑𝑑 − 𝑐𝑐𝑑𝑑𝑖 𝑐𝑐𝑑𝑑𝑖 − 𝑐𝑐𝑑𝑑𝑖 = −𝜎𝜎𝑑;𝑐𝑐𝑑𝑑𝑡𝑡~𝑑𝑑. 𝑑𝑑.𝑜𝑜 0,𝜎𝜎𝑑 . 



Differencing with more than two time 
periods (concluded) 

 A thorough discussion of how serial correlation in the errors may be detected and remedied is 
inappropriate for this class, however, software such as Stata has options to make the standard 
errors robust to serial correlation within a cluster (“i”). 

 In Stata the language should go at the end of a regression command. 
◦ The syntax looks like this: 

 reg yvar listofregressors, vce(cluster id),  

 where id is a variable that uniquely identifies each element in the cross section with a different 
value. 



Conclusion 
 Panel data can be enormously helpful in empirical applications in which biased estimators arise 
because of unobserved effects. 

 Unfortunately panel data is still somewhat rare, partly because it is expensive to track many 
individuals accurately over a period of time. 

 Since cross sectional data is more common, there is still plenty of need for methods that can be 
used to counteract biases in single cross section samples. 
◦ The next method we will study (instrumental variables) is an example. 
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