
Classes and Methods

CS 180
Sunil Prabhakar
Department of Computer Science
Purdue University

Objectives

Review
 Methods

 Constructors
 Call-by-value
 Overloading

 Private and public modifiers
 Scope and extent
 this keyword
 Static methods and data

User-defined Classes

 Create a class whenever no existing class
fits our needs.

 Data members
 each objects gets its own copy

 Methods
 only methods defined for a class can be called

on an object of that class (encapsulation).

3

4

class {

}

Template for Class Definition

Import Statements

Class Comment

Class Name

Data Members

Methods
(incl. Constructor)

Student

5

import javax.swing.*;
/************************************/
/* Java class for a single student */
/* Author: Sunil Prabhakar */
/* Date: September 8, 2009 */
/************************************/
class Student {
 private String name;

private String id;

 public Student(String studentName){
 name = studentName;

id = “”;
 }

public void setName(String studentName){
 name = studentName;
 }

public String getName(){
 return name;
 }

public String getId(){
 return id;
 }

public void setId(String studentId){
 id = studentId;
 }
}

Constructors
 Special type of method.
 Called whenever a new object is created.
 Special syntax:

 name is same as class name;
 called using new ClassName(…);
 no return type (or return statement);

 If none defined, compiler adds a default
one (with no parameters)

6

public Student(String studentName) {

...

}

Call-by-Value

 When a method is called:
 temporary memory space is created for the

method
 parameters
 local data

 Passed arguments are copied to
corresponding parameters
 left-to-right association
 must be assignment-compatible
 pass-by-value; call-by-value

 method execution begins
7

8

Call-by-Value Example

class MyClass {
public double myMethod(int one, double y) {
 int i=5;

one += 6;
i *= y;
return i;

 }
}

MyClass myObj;
int x, y;
myObj = new MyClass();
x = 10;
y = 20;
y = (int)myObj.myMethod(x, y);
System.out.println(x + " " + y);

one

y

2

i

Memory Allocation for Parameters
class MyClass {

public double myMethod(int one, double y){
int i=5;

 one += 6;
i *= y;
return i;

 }
}

MyClass myObj;
int x, y;
myObj = new MyClass();
x = 10;
y = 20;
y = (int) myObj.myMethod(x, y);
System.out.println(x + " " + y);

2

10

x

y
20

1

1
10

20.0

5.0

class MyClass {
public double myMethod(int one, double y){

double i=5;
 one += 6;

i *= y;
return i;

 }
}

Memory Allocation for Parameters
MyClass myObj;
int x, y;
myObj = new MyClass();
x = 10;
y = 20;
y = (int)myObj.myMethod(x, y);
System.out.println(x + " " + y);

10

x

y
20

34

100

one

y

i

3

20.0

10

5.0100.0

16

11

Objects and Methods

 When we pass an object, we are actually
passing the reference (name) of an object
 it means a duplicate of an object is NOT

created in the called method
 The return value is also similarly copied

 since the reference is copied, the actual object
does not get destroyed!

12

Object Example
class Vector {

int xCoord, yCoord;

public Vector (int x, int y) {
xCoord = x;
yCoord = y;

 }
public Vector addVector(Vector v) {
 Vector tempVector;

tempVector = new Vector (xCoord+v.getX(),
yCoord + v.getY());
return tempVector;

 }
public int getX() {

return xCoord;
 }

public int getY() {
return yCoord;

 }
. . .

}

Vector v1, v2;
v1 = new Vector(2,1);
v2 = new Vector(3,4);
v2 = v1.addVector(v2);

Memory diagram

Method Overloading

 In a given class, we can have multiple
methods with the same name.

 Called overloading.
 Which one gets called?
 Based upon signature

 Number, order, and type of parameters.
 NOTE: Names of parameters and return type

not included in signature!
 Overloaded methods must have unique

signatures.
13

Encapsulation

 One of the key benefits of OOP
 Limit who can view/modify what data

members and how
 Improves program reliability and reuse
 Achieved by

 hiding data members from outside the class
 limiting which methods can be called directly

from outside the class
 using public and private modifiers

14

Visibility modifiers

 A data member or method that is declared
public can be accessed by the code in any
class.

 A private data member can only be
accessed code that is part of the same
class.

 A private method can only be called from
code that is part of the same class.

15

Guidelines

 Implementation details (data members)
should be private
 Use accessor/mutator methods

 Internal methods should be private
 Constructors are usually public
 Constants may be made public if useful

(e.g. Math.PI)
 Default value is public.

16

Identifier types

 Identifiers can be declared almost
anywhere in a program.

 There are three main types of declarations:
 Data members of a class

 Declared outside any method
 Usually at the beginning of the class definition

 Formal parameters of a method
 Local variables inside a method

17

Identifier extent and scope

 Each identifier refers to a piece of memory.
 That piece is reserved upon declaration.
 The lifetime of this reservation is called the

extent of the identifier.
 The ability to access this location from a

given line of code is called scope.
 Important to understand both.
 Extent and scope depend upon the type of

variable and its declaration.
18

Extent
 Object data members

 created when an object is created (by new)
 destroyed when the object is garbage collected

(no more references to it)
 must be unique within each class

 Formal parameters
 created each time the method is called
 destroyed when the method finishes execution
 must be unique for each method

 Local variables
 created upon declaration
 destroyed at end of block
 must be unique for each block,

 Limiting extent allows compilers to reuse space
19

Which one do we mean?

 An identifier in a program is matched as
follows:
 A local variable, or parameter, if it exists.
 A data member, otherwise.

 Thus, a data member can be masked!
 Can lead to subtle errors.

20

class Student {

 private String name;
 private String id;

 public Student(String fName, String lName, String id) {

 String sName;

 sName = fName + “, “ + lName;

 name = sName;

 id = id;

 }
 ...
}

21

Sample Matching

class Student {

 private String name;
 private String id;

 public Student(String name, String lName, String sId) {

 String sName = name + “, “ + lName;

 name = sName;

 id = sId;

 }
 ...
}

22

Sample Matching

23

Remember, ….

 A local variable can be declared just about
anywhere!

 Its scope (the area of code from where it is
visible) is limited to the enclosing braces.

 Statements within a pair of braces are called a
block.

 Local variables are destroyed when the block
finishes execution.

 Data members of a class are declared outside
any method. Their scope is determined by public
and private modifiers.

24

Reserved Word this

 The reserved word this is an automatically
defined data member of each object.

 It is set to point to the object itself.
 It is called a self-referencing pointer

class Student {

 private String name;
 private String id;

 public Student(String fName, String lName, String id) {

 String sName;

 sName = fName + “, “ + lName;

 name = sName;

 this.id = id;

 }
 ...
}

25

Correct references

Overloaded constructors

 As with other methods, constructors can be
overloaded.

 Matching based upon signature.
 Can also call one constructor from another

using the keyword this
 must be the first statement in the calling

constructor.

26

Multiple constructors and this

27

public Student() {
 this(“Unknown”, “-1”);
}

public Student(String id) {
 this(“Unknown”, id);
}

public Student(Student st) {
 this(st.getName(),
 st.getId());
}

public Student(String name, String id) {
 this.name = name;

this.id = id;
}

28

Copy constructor

 A copy constructor can be very handy.
 It takes an object as input and creates

another object (of the same class) and
copies the values.

 Useful also for preventing surreptitious
access to private objects.

 If a method returns a pointer to a private
object, then the client can modify the
private object!

 Avoid this by returning a copy object

29

Use of a copy constructor
class Jedi {
 private Person father;

 public void Jedi(Person f){
 father = f;
 }

 Person getFather(){
 return father;
 }
}

class Corruptor {
 Jedi luke;
 Person p;
 public static void main(String[] args){
 luke = new Jedi(new Person(“ObiWan”));
 p = luke.getFather();
 p.setName(“Darth Vader”);
 p = luke.getFather();
 System.out.println(p.getName());
 }
}

class Jedi {
 private Person father;

 public void Jedi(Person f){
 father = f;
 }

 Person getFather(){
 Person x;
 x = new Person(father);
 return x;
 }
}

Class vs. Instance methods

 There are two main types of methods in
OOP:
 Instance methods that are called on an object

 person.getAge()
 have access to that object’s data members

 Class methods that do not require an object
 Math.sqrt(), Integer.parseInt()

 Class methods are specified using the
static modifier

30

Class vs. Instance methods

31

class Test {

public static void main(String args[]) {
myMethod();
Person jane = new Person (“Jane”);
jane.setAge(35);

}
public static void myMethod() {

System.out.println (“Class Method”);
}

}
class Person {

String name;
int age;

public Person(String n) {
name = n;

}
public void setAge(int a) {

age = a;
}
public int getAge() {

return age;
}

}

Class vs. Instance Data members

 Data members too can be either
 instance -- one copy per object, stored with object
 class -- one copy for entire class, stored with class

 The static modifier is used to declare a class
data member

 Static data members are accessed using the
Class name

 Static constants can be very useful (e.g.,
Math.PI)

32

Using class variables
class Student {
 private static int nextID=100;
 public static final String UGRAD = “Undergraduate”;
 public static final String GRAD = “Graduate”;
 private String name;

private String iD;
private String status;

 public Student(String n, String stat){
 iD = “” + Student.nextID++;

 name = n;
 status = stat;

 }
}

class Test {
public static void main(String args[]) {

Student s1, s2;
 s1 = new Student(“Radha”, Student.UGRAD);
 s2 = new Student(“Jane”, Student.GRAD);
 System.out.println(s1.getName() + “ is an “ + s1.getStatus()
+ “ with ID:” + s1.getId());

 System.out.println(s2.getName() + “ is an “ + s2.getStatus()
+ “ with ID:” + s2.getId());

}
}

Static methods

 IMPORTANT: a static method cannot
access any instance data members or
instance methods
 I.e. it can only access other static members

and methods
 Note that main is a static method!

 No object is necessary to run main.
 But, it can’t call non-static methods.

Class vs. Instance methods

35

class Test {

public static void main(String args[]) {
myClassMethod();
Test test = new Test();
test.myInstanceMethod();

}
public static void myClassMethod() {

System.out.println (“Class Method”);
}
public void myInstanceMethod() {

System.out.println (“Instance Method”);
}

}

Static Initializer

 Earlier, we initialized static variables upon
declaration. This initialization takes place
when the class is loaded.
 Imported or used for the first time in a program.

 What if we want to do more?
 E.g. set the initial value based upon user input?

 We can define a static initializer segment
that gets executed when a class is loaded.

Static Initializer

 As with static methods, we cannot reference
any non-static method or data member from
the static initializer block.

class Student {
. . .

 private static int nextID;
. . .
static {

 String str;
 str = JOptionPane.showInputDialog(null, “enter starting
value”);
 nextID = Integer.parseInt(str);
 }

. . .

Examples of class methods

The Math class has numerous class methods and
constants
Math.abs, Math.pow,
Math.PI
We have also seen Wrapper classes for the
primitive data types:
Integer: Integer.parseInt, Integer.MAX_VALUE
Double: Double.parseDouble, …
Similarly for long, short, byte, and boolean.

39

Changing Any Class to a Main Class

 Any class can be set to be a main class.
 All you have to do is to include the main method.

 It can be executed by: %java Student

class Student {

 . . .
 public static void main(String[] args) {

 Student student1;

 student1 = new Student();

 student1.setName("Purdue Pete");

 System.out.println(student1.getName() + "is a
student");
 }
}

The null constant

 null is a special value. Its type is that of a
reference to an object (of any class).

 We can set an object identifier to this value
to show that it does not point to any object.
 Bicycle bike1=null;

 A method that returns objects (of any
class) can return a null value.

 Note that you will get a run-time error if you
access a data member of call a method of
a null object -- null pointer exception.

Testing for null values.
class Account {
 private Person owner;
 public Account(){
 owner=null;
 }
 public void setOwner(Person p){
 owner = p;
 }
 public Person getOwner(){
 return(owner);
 }
}

class Bank {
public static void main(String[] arg){
 Account acc = new Account();
 Person p;
 …
 p = acc.getOwner();
 if (p==null)
 System.out.println(“No owner”);
 …
}

We can use == or != to
check if an object

reference
is null or not.

