
Inheritance and Polymorphism
Recitation 04/10/2009

CS 180
Department of Computer Science,
Purdue University

2

Reminders

Project 7 is due next Wednesday.

3

Introduction

Recall:
Inheritance allows data and methods to
be inherited by a subclass.

Polymorphism simplifies code by
automatically using the appropriate
method for a given object/type.

4

Inheritance

A subclass is a specialization of the class it
inherits from.

The common behavior is implemented once in
the superclass and automatically inherited by the
subclasses.

Consider the example of a roster of students with
different grading for graduates and undergrads.

5

Overriding

A derived class may override an inherited
method

Simply define a method with the same
method header.

An overridden method cannot change the return
type!
Can be prevented with final

Note Difference: A subclass may overload
any method by using the same name, but
different signature.

6

The Java Inheritance Hierarchy

private: data members and methods are
accessible only to instances of the class.
protected: visible to instances of the
class and individual descendant
instances.
public: accessible to all

7

Inheritance and Constructors

Constructors are not inherited.

Default constructors are made iff no others found

A call to the superclass constructor, super(),
must be the first line of a constructor

It is automatically added if not present

You may optionally call some other constructor of
the base class,

e.g.: super(“some string”);

super also has other meanings

8

Super keyword

It can also be used to call a method of the parent
class:

e.g.: super.methodA();

This can be useful to:

Call an overridden method
Access data members of the parent

Example 1
Consider a college record-keeping system with
records about students, faculty and staff.

All these specific groups are sub-classes of the class
Person.

Example 1, cont.

class Person
{

private String name;
public Person()
{

name = “no name”;
}
public Person(String _name)
{

name = _name;
}
public void setName(String) { … }
public String getName() { … }

public void output()
{

System.out.println(name);
}

}

Example 1, cont.

• class Student is a subclass of class Person and class
Person is called the superclass.

public class Student extends Person{
private int studentNumber;
public Student(String _name, int _num){

super(_name);
studentNumber = _num;

}
// override the method in Person class
public void output()
{

System.out.println(name);
System.out.println(studentNumber);

}
//more methods not in Person class
…

}

12

Polymorphism
Polymorphism allows a single variable to refer
to objects from different subclasses in the same
inheritance hierarchy
For example, if Cat and Dog are subclasses of
Pet, then the following statements are valid:

Pet myPet;

myPet = new Dog();

. . .

myPet = new Cat();

13

Dynamic Binding

At compile time, the version of a
polymorphic method to be executed is
unknown.

Determined at run-time by the class of the
object

This is called dynamic (late) binding

14

Object Type

Consider the inheritance hierarchy:
Object ← A ← B

An instance of B is also an instance of A and
Object.

Instances of class B can be used where objects
of class A can be used.
The relationship is one way (thus the arrows)

A reference of type A can hold an object of type B.
It can only be treated like an instance of A unless
cast.

©The McGraw-Hill Companies, Inc. Permission required for
reproduction or display.

15

The instanceof Operator

The instanceof operator can help us
discover the class of an object at runtime.
The following code counts the number of
undergraduate students.

int undergradCount = 0;

for (int i = 0; i < numberOfStudents; i++) {

if (roster[i] instanceof UndergraduateStudent) {

undergradCount++;

}

}

©The McGraw-Hill Companies, Inc. Permission required for
reproduction or display.

16

Definition: Abstract Class
An abstract class is a class

defined with the modifier abstract OR
that contains an abstract method OR
that does not provide an implementation of an inherited abstract
method

An abstract method is a method with the keyword
abstract, and it ends with a semicolon instead of a
method body.

Private methods and static methods may not be declared
abstract.

No instances can be created from an abstract class.

©The McGraw-Hill Companies, Inc. Permission required for
reproduction or display.

17

Inheritance versus Interface

Interfaces are like a contract to share or
guarantee behavior

Inheritance is used to share common
code when one class is a specialized
form of another.

Example 2

Animal

Bird Mammal Fish

Owl BatPenguin Giraffe Whale Shark Salmon

Flyer

Swimmer

Example 2

Our animals:

public class Owl {…}

public class Penguin {…}

public class Bat {…}

public class Giraffe {…}

public class Whale {…}

public class Shark {…}

public class Salmon {…}

Example 2

Create appropriate superclasses:

public class Animal {…}
public class Bird {…}
public class Mammal {…}
public class Fish {…}
public class Owl {…}
public class Penguin {…}
public class Bat {…}
public class Giraffe {…}
public class Whale {…}
public class Shark {…}
public class Salmon {…}

Example 2

Connect the hierarchy:

public class Animal {…}
public class Bird extends Animal {…}
public class Mammal extends Animal {…}
public class Fish extends Animal {…}
public class Owl extends Bird {…}
public class Penguin extends Bird {…}
public class Bat extends Mammal {…}
public class Giraffe extends Mammal {…}
public class Whale extends Mammal {…}
public class Shark extends Fish {…}
public class Salmon extends Fish {…}

Example 2

Add in appropriate interfaces at the highest levels:

public class Animal {…}
public class Bird extends Animal {…}
public class Mammal extends Animal {…}
public class Fish extends Animal implements Swimmer {…}
public class Owl extends Bird implements Flyer {…}
public class Penguin extends Bird {…}
public class Bat extends Mammal implements Flyer {…}
public class Giraffe extends Mammal {…}
public class Whale extends Mammal implements Swimmer {…}
public class Shark extends Fish {…}
public class Salmon extends Fish {…}

Example 2

Make appropriate classes abstract:

abstract public class Animal {…}
abstract public class Bird extends Animal {…}
abstract public class Mammal extends Animal {…}
abstract public class Fish extends Animal implements Swimmer {…}
public class Owl extends Bird implements Flyer {…}
public class Penguin extends Bird {…}
public class Bat extends Mammal implements Flyer {…}
public class Giraffe extends Mammal {…}
public class Whale extends Mammal implements Swimmer {…}
public class Shark extends Fish {…}
public class Salmon extends Fish {…}

Example 2 - Quiz

Which are valid instantiations?

Animal a = new Animal();
Animal b = new Fish();
Animal c = new Flyer();
Mammal d = new Bat();
Fish e = new Swimmer();
Swimmer f = new Shark();
Flyer g = new Owl();
Swimmer h = new Whale();
Swimmer i = new Fish();

abstract public class Animal {…}
abstract public class Bird extends Animal {…}
abstract public class Mammal extends Animal {…}
abstract public class Fish extends Animal implements Swimmer {…}
public class Owl extends Bird implements Flyer {…}
public class Penguin extends Bird {…}
public class Bat extends Mammal implements Flyer {…}
public class Giraffe extends Mammal {…}
public class Whale extends Mammal implements Swimmer {…}
public class Shark extends Fish {…}
public class Salmon extends Fish {…}

Timer and TimerTask

Timer
scheduleAtFixedRate(TimerTask task,
long delay, long period)

task: task to be scheduled.
delay: delay in milliseconds before task is to
be executed for the first time
perid: time in milliseconds between
successive task executions

Timer and TimerTask

TimerTask
Inherit this class
Override the run() method

Put everything you want to be executed into
this method.

Timer and TimerTask Example
public class TimerTest {

private Timer timer;
private TimerTask task;

public TimerTest(TimerTask task) {
this.timer = new Timer();
this.task = task;

}
public void start(int delay, int internal) {

timer.scheduleAtFixedRate(task, delay * 1000,
internal * 1000);
}
public static void main(String[] args) {

TimerTask task1 = new MyTask(“ Job 1");
TimerTask task2 = new MyTask("Job 2");
TimerTest tt1 = new TimerTest(task1);
tt1.start(1,3);
TimerTest tt2 = new TimerTest(task2);
tt2.start(1,1);

}
}

class MyTask extends TimerTask {
private String jobName;

//override
public void run() {

System.out.println(jobName);
}

public MyTask(String jobName) {
} this.jobName = jobName;

}

Inherit the
TimerTask

Polymorphism

Override the abstract
method in the class
TimerTask.

delay * 1000 (ms)
= delay (sec)

	Slide Number 1
	Reminders
	Introduction
	Inheritance
	Overriding
	The Java Inheritance Hierarchy
	Inheritance and Constructors
	Super keyword
	Example 1
	Example 1, cont.
	Example 1, cont.
	Polymorphism
	Dynamic Binding
	Object Type
	The instanceof Operator
	Definition: Abstract Class
	Inheritance versus Interface
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2 - Quiz
	Timer and TimerTask
	Timer and TimerTask
	Timer and TimerTask Example

