Inheritance and Polymorphism

Recitation 04/10/2009

CS 180
Department of Computer Science,
Purdue University

[Reminders

Project 7 is due next Wednesday.

PURDUE

[Introduction

Recall:

o Inheritance allows data and methods to
be inherited by a subclass.

o Polymorphism simplifies code by
automatically using the appropriate
method for a given object/type.

PURDUE ;

[Inheritance

A subclass is a specialization of the class it
inherits from.

The common behavior is implemented once in
the superclass and automatically inherited by the
subclasses.

Consider the example of a roster of students with
different grading for graduates and undergrads.

PURDUE ;

[Overriding

A derived class may override an inherited
method

Simply define a method with the same
method header.
o An overridden method cannot change the return

type!
o Can be prevented with final

Note Difference: A subclass may overload
any method by using the same name, but
different signature.

PURDUE ;

[The Java Inheritance Hierarchy

private: data members and methods are
accessible only to instances of the class.

protected: visible to instances of the
class and individual descendant
Instances.

public: accessible to all

PURDUE

[Inheritance and Constructors

Constructors are not inherited.

Default constructors are made iff no others found

A call to the superclass constructor, super (),
must be the first line of a constructor

o Itis automatically added if not present

You may optionally call some other constructor of
the base class,

o e.g..super(“some string”);
super also has other meanings

PURDUE 7

[Super keyword

It can also be used to call a method of the parent
class:

o e.g.: super.methodA();
This can be useful to:

o Call an overridden method
o Access data members of the parent

PURDUE 8

Example 1

Consider a college record-keeping system with
records about students, faculty and staff.

All these specific groups are sub-classes of the class
Person.

Person

/\

Student Employee
Undergraduate Graduate Faculty Staff
MastersDegree PhD NonDegree

PURDUE

Example 1, cont.

class Person

1

private String name;
public Person()

{
name = “no name”;
?ublic Person(String _name)

name = _name;

%ublic void setName(String) { .. }
public String getName() { .. }

public void output()

System.out._printin(name);

}

PURDUE

Example 1, cont.

public class Student extends Person{
private int studentNumber;
public Student(String name, Int num){
super(_name);
studentNumber = _num;

}

// override the method 1n Person class
public void output()

{

System.out.printin(name);
System.out.printin(studentNumber);

//more methods not In Person class

e class Student is a subclass of class Person and class

Person is called the superclass.
PURDUE

[Polymorphism]

= Polymorphism allows a single variable to refer
to objects from different subclasses in the same
iInheritance hierarchy

= For example, if Cat and Dog are subclasses of
Pet, then the following statements are valid:

Pet myPet;

myPet = new Dog();

myPet = new Cat();

PURDUE 2

[Dynamic Binding

At compile time, the version of a

polymorphic method to be executed is
unknown.

o Determined at run-time by the class of the
object

This is called dynamic (late) binding

PURDUE 13

[Object Type

Consider the inheritance hierarchy:
Object — A «— B

An instance of B is also an instance of A and
Object.

o Instances of class B can be used where objects
of class A can be used.

o The relationship is one way (thus the arrows)

A reference of type A can hold an object of type B.
It can only be treated like an instance of A unless

cast.
PURDUE 14

The instanceof Operator

= The instanceof operator can help us
discover the class of an object at runtime.

= The following code counts the number of
undergraduate students.

int undergradCount = 0;

for (aint 1 = 0; 1 < numberOfStudents; 1++) {

1T (roster|[i] instanceof UndergraduateStudent) {
undergradCount++;

}
}

PURDUE ©The McGraw-Hill Companies, Inc. Permission required for 15
v RS T reproduction or display.

Definition: Abstract Class

An abstract class is a class
o defined with the modifier abstract OR
o that contains an abstract method OR

o that does not provide an implementation of an inherited abstract
method

An abstract method is a method with the keyword
abstract, and it ends with a semicolon instead of a
method body.

o Private methods and static methods may not be declared
abstract.

No instances can be created from an abstract class.

PURDUE ©The McGraw-Hill Companies, Inc. Permission required for 16
prvERs LT reproduction or display.

Inheritance versus Interface

m Interfaces are like a contract to share or
guarantee behavior

= |nheritance is used to share common
code when one class is a specialized
form of another.

PURDUE ©The McGraw-Hill Companies, Inc. Permission required for 17

reproduction or display.

[Example 2

Flyer
Animal _
Swimmer

[\

|
-
Bird Wammal Fish
1 | 1 1 1 1

PURDUE

Example 2

Our animals:

public class Owl {...}
public class Penguin {...}
public class Bat {...}
public class Giraffe {...}
public class Whale {...}
public class Shark {...}

public class Salmon {...}

PURDUE

Example 2

Create appropriate superclasses:

public class Animal {...}
public class Bird {...}
public class Mammal {...}
public class Fish {...}
public class Owl {...}
public class Penguin {...}
public class Bat {...}
public class Giraffe {...}
public class Whale {...}
public class Shark {...}
public class Salmon {...}

PURDUE

Example 2

Connect the hierarchy:

public class Animal {...}

public class Bird extends Animal {...}
public class Mammal extends Animal {...}
public class Fish extends Animal {...}
public class Owl extends Bird {...}

public class Penguin extends Bird {...}
public class Bat extends Mammal {...}
public class Giraffe extends Mammal {...}
public class Whale extends Mammal {...}
public class Shark extends Fish {...}
public class Salmon extends Fish {...}

PURDUE

Example 2

Add in appropriate interfaces at the highest levels:

public class Animal {...}

public class Bird extends Animal {...}

public class Mammal extends Animal {...}

public class Fish extends Animal implements Swimmer {...}
public class Owl extends Bird implements Flyer {...}

public class Penguin extends Bird {...}

public class Bat extends Mammal implements Flyer {...}
public class Giraffe extends Mammal {...}

public class Whale extends Mammal implements Swimmer {...}
public class Shark extends Fish {...}

public class Salmon extends Fish {...}

PURDUE

Example 2

Make appropriate classes abstract:

abstract public class Animal {...}

abstract public class Bird extends Animal {...}

abstract public class Mammal extends Animal {...}

abstract public class Fish extends Animal implements Swimmer {...}
public class Owl extends Bird implements Flyer {...}

public class Penguin extends Bird {...}

public class Bat extends Mammal implements Flyer {...}

public class Giraffe extends Mammal {...}

public class Whale extends Mammal implements Swimmer {...}
public class Shark extends Fish {...}

public class Salmon extends Fish {...}

PURDUE

Example 2 - Quiz

abstract public class Animal {...}
abstract public class Bird extends Animal {...}
abstract public class Mammal extends Animal {...}

abstract public class Fish extends Animal implements Swimmer {...}
public class Owl extends Bird implements Flyer {...}

public class Penguin extends Bird {...}

public class Bat extends Mammal implements Flyer{...}

public class Giraffe extends Mammal {...}

public class Whale extends Mammal implements Swimmer {...}

public class Shark extends Fish {...}
public class Salmon extends Fish {...}

PURDUE

Which are valid instantiations?

Animal a = new Animal();
Animal b = new Fish();
Animal ¢ = new Flyer();
Mammal d = new Bat();
Fish e = new Swimmer();
Swimmer f = new Shark();
Flyer g = new Owl();
Swimmer h = new Whale();
Swimmer i = new Fish();

Timer and TimerTask

Timer

o scheduleAtFixedRate(TimerTask task,
long delay, long period)

task: task to be scheduled.

delay: delay in milliseconds before task is to
be executed for the first time

perid: time in milliseconds between
successive task executions

PURDUE

[Timer and TimerTask

TimerTask

o Inherit this class

o Override the run() method

Put everything you want to be executed into
this method.

PURDUE

Timer and TimerTask Example

Inherit the
public class TimerTest { TimerTask
private Timer timer;
private TimerTask task; class MyTask E:xtends TimerTas@{
private String jobName;
public TimerTest(TimerTask task) { Override the abstract
this.timer = new Timer(); /loverride method in the class

this.task = task;

[public void run() {] TimerTask.
daay*1000(ms)]

} = delay (sec) System.out.printin(jobName);
public void start(int delay, int internal) { }
timer.scheduleAtFixedRate(task, [delay * 1000,]
internal * 1000); public MyTask(String jobName) {
} ‘ Polymorphism \ } this.jobName = jobName;
public static void main(String[] args) {
ﬁ'imerTask task1 = new MyTask(“ Job 1");] Y

TimerTask task2 = new MyTask("Job 2");
TimerTest tt1 = new TimerTest(task1);
tt1.start(1,3);

TimerTest tt2 = new TimerTest(task2);
tt2.start(1,1);

} PURDUE

	Slide Number 1
	Reminders
	Introduction
	Inheritance
	Overriding
	The Java Inheritance Hierarchy
	Inheritance and Constructors
	Super keyword
	Example 1
	Example 1, cont.
	Example 1, cont.
	Polymorphism
	Dynamic Binding
	Object Type
	The instanceof Operator
	Definition: Abstract Class
	Inheritance versus Interface
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2 - Quiz
	Timer and TimerTask
	Timer and TimerTask
	Timer and TimerTask Example

