
Inheritance and Polymorphism

CS 180
Sunil Prabhakar
Department of Computer Science
Purdue University

Tuesday, April 17, 2012

Objectives

n Understand Inheritance
¡ expressing inheritance: extends
¡ visibility and inheritance: protected
¡ overriding, final
¡ constructors and inheritance: super

n Polymorphism
¡ polymorphic messages
¡ instanceof operator
¡ abstract classes & methods: abstract
¡

2

Tuesday, April 17, 2012

3

Introduction

n Inheritance and polymorphism are key concepts
of Object Oriented Programming.

n Inheritance facilitates the reuse of code.
n A subclass inherits members (data and methods)

from all its ancestor classes.
n The subclass can add more functionality to the

class or replace some functionality that it inherits.
n Polymorphism simplifies code by automatically

using the appropriate method for a given object.
n Polymorphism also makes it easy to extend code.

Tuesday, April 17, 2012

Inheritance

4

Tuesday, April 17, 2012

5

Sample application

n Banking Example:
¡ There are two types of accounts: checking and

savings.
¡ All accounts have a number, and an owner (with

name, and a Social Security number), and balance.
¡ There are different rules for interest and minimum

balance for checking accounts and savings accounts.
n How should we model this application?

¡ Two classes, one for each type of account?
¡ Have to repeat code for common parts.

n can lead to inconsistencies, harder to maintain.
¡ Create three classes: Account;

SavingsAccount, and CheckingAccount

Tuesday, April 17, 2012

6

Inheritance
n A superclass corresponds to a general class, and

a subclass is a specialization of the superclass.
¡ E.g. Account, Checking, Savings.

n Behavior and data common to the subclasses is
often available in the superclass.
¡ E.g. Account number, owner name, data opened.

n Each subclass provides behavior and data that is
relevant only to the subclass.
¡ E.g. Minimum balance for checking a/c, interest rate

and computation for savings account.
n The common behavior is implemented once in

the superclass and automatically inherited by the
subclasses.

Tuesday, April 17, 2012

Inheritance

n In order to inherit the data and code from a
class , we have to create a subclass of that
class using the extends keyword.
public class SavingsAccount extends Account {

n SavingsAccount will inherit the data members
and methods of Account.

n SavingsAccount is a sub (child, or derived)
class; Account is a super (parent or base)
class.
¡ A parent (of a parent ...) is an ancestor class.
¡ A child (of a child ...) is a descendant class.

7

Tuesday, April 17, 2012

8

The Account class
class Account {
 protected String ownerName;
 protected int socialSecNum;
 protected float balance;
 public Account() {
 this(“Unknown”, 0, 0.0);
 }
 public Account(String name, int ssn) {
 this(name, ssn, 0.0);
 }
 public Account(String name, int ssn, float bal) {
 ownerName = name;
 socialSecNum = ssn;
 balance = bal;
 }
 public String getName() {
 return ownerName;
 }
 public String getSsn() {
 return socialSecNum;
 }
 public float getBalance() {
 return balance;
 }
 public void setName(String newName) {
 ownerName = newName;
 }
 public void accrueInterest() {
 System.out.println(“No interest”);
 }
public void deposit(float amount) {
 balance += amount;
 }
}

Tuesday, April 17, 2012

9

Savings Account

class SavingsAccount extends Account{

 protected static final float MIN_BALANCE=100.0;

 protected static final float OVERDRAW_LIMIT=-1000.0;
 protected static final float INT_RATE=5.0;

 public void accrueInterest() {
 balance *= 1 + INT_RATE/100.0;
 }

 public void withdraw(float amount) {
 float temp;
 temp = balance - amount;

if (temp >= OVERDRAW_LIMIT)
 balance = temp;

 else
 System.out.println(“Insufficient funds”);

 }
}

Tuesday, April 17, 2012

10

Checking Account

class CheckingAccount extends Account{

 protected static final float MIN_INT_BALANCE=100.0;
 protected static final float INT_RATE=1.0;

 public void accrueInterest() {
if (balance > MIN_INT_BALANCE)

 balance *= 1 + INT_RATE/100.0;
 }

 public void withdraw(float amount) {

 float temp;
 temp = balance - amount;

if (temp >= 0)
 balance = temp;

 else
 System.out.println(“Insufficient funds”);

 }
}

Tuesday, April 17, 2012

Visibility

11

Tuesday, April 17, 2012

12

The visibility modifiers

n public data members and methods are
accessible to everyone.

n private data members and methods are
accessible only to instances of the class.

n protected data members and methods are
accessible only to instances of the class and
descendant classes

n protected is similar to:
¡ public for descendant classes
¡ private for any other class

Tuesday, April 17, 2012

13

Visibility (unrelated class)

class Test {
Sup sup = new Sup();
Sub sub = new Sub();

sup.a = 5;
sup.b = 5;
sup.c = 5;

sub.a = 5;
sub.b = 5;
sub.c = 5;
sub.d = 5;
sub.e = 5;
sub.f = 5;

}

class Sup {
public int a;
protected int b;
private int c;

}

class Sub extends Sup {
public int d;
protected int e;
private int f;

}

From an unrelated
class, only public
members are visible.

Tuesday, April 17, 2012

14

Visibility (related class)

class Sup {
public int a;
protected int b;
private int c;

}

class Sub extends Sup {
public int d;
protected int e;
private int f;

public void methodA(){
a=5;
b=5;
c=5;
d=5;
e=5;
f=5;

}
}

From a descendant
class, only private
members of ancestors
are hidden.

Tuesday, April 17, 2012

15

Visibility (static members)

class Test {
Sup sup = new Sup();
Sub sub = new Sub();

sup.a = 5;
sup.b = 5;
sup.c = 5;

sub.a = 5;
sub.b = 5;
sub.c = 5;
sub.d = 5;
sub.e = 5;
sub.f = 5;

}

class Sup {
public static int a;
protected static int b;
private static int c;

}

class Sub extends Sup {
public static int d;
protected static int e;
private static int f;

}

Same rules for class
(static) members.

Tuesday, April 17, 2012

16

Visibility (static members)

class Sup {
public static int a;
protected static int b;
private static int c;

}

class Sub extends Sup {
public int d;
protected int e;
private int f;

public void methodA(){
a=5;
b=5;
c=5;
d=5;
e=5;
f=5;

}
}

Same rules for class
(static) members.

Tuesday, April 17, 2012

17

Visibility (across instances)

class Sup {
public int a;
protected int b;
private int c;

}

class Sub extends Sup {
public int d;
protected int e;
private int f;

public void methodA(Sub s){
s.a=5;
s.b=5;
s.c=5;
s.d=5;
s.e=5;
s.f=5;

}
}

An instance method
has the same access to
data members of any
object of that class.

Tuesday, April 17, 2012

Overriding

18

Tuesday, April 17, 2012

19

Overriding
n All non-private members of a class are inherited by

derived classes
¡ This includes instance and class members

n A derived class may however, override an inherited
method
¡ Data members can also be overridden but should be avoided

since it only creates confusion.
n To override a method, the derived class simply defines a

method with the same signature (same name, number
and types of parameters)
¡ An overridden method cannot change the return type!

n A subclass may also overload any method (inherited or
otherwise) by using the same name, but different
signature.

Tuesday, April 17, 2012

20

The Account class
class Account {
 protected String ownerName;
 protected int socialSecNum;
 protected float balance;
 public Account() {
 this(“Unknown”, 0, 0.0);
 }
 public Account(String name, int ssn) {
 this(name, ssn, 0.0);
 }
 public Account(String name, int ssn, float bal) {
 ownerName = name;
 socialSecNum = ssn;
 balance = bal;
 }
 public String getName() {
 return ownerName;
 }
 public String getSsn() {
 return socialSecNum;
 }
 public float getBalance() {
 return balance;
 }
 public void setName(String newName) {
 ownerName = newName;
 }
 public void accrueInterest() {
 System.out.println(“No interest”);
 }
public void deposit(float amount) {
 balance += amount;
 }
}

Tuesday, April 17, 2012

21

Savings Account

class SavingsAccount extends Account{

 protected static final float MIN_BALANCE=100.0;

 protected static final float OVERDRAW_LIMIT=-1000.0;
 protected static final float INT_RATE=5.0;

 public void accrueInterest() {
 balance *= 1 + INT_RATE/100.0;
 }

 public void withdraw(float amount) {
 float temp;
 temp = balance - amount;

if (temp >= OVERDRAW_LIMIT)
 balance = temp;

 else
 System.out.println(“Insufficient funds”);

 }
}

Tuesday, April 17, 2012

class Sup {
methodA(){
}
methodA(int i){
}

}

class Sub extends Sup {
methodA(){
}
methodA(char c){
}

}

22

Overriding and overloading

 Sup sup = new Sup();
 Sub sub = new Sub();
 int i=9;
 char c = 'g';

 sup.methodA();

 sup.methodA(i);

 sub.methodA();

 sub.methodA(i);

 sub.methodA(c);

 sup.methodA(c);

overloaded

overridden

inherited

overridden & overloaded

Overloaded & Auto cast

Tuesday, April 17, 2012

23

Limiting inheritance and overriding

n If a class is declared to be final, then no
other classes can derive from it.

 public final class ClassA

n If a method is declared to be final, then no
derived class can override this method.
¡ A final method can be overloaded in a derived

class though.
public final void methodA()

Tuesday, April 17, 2012

The Object class

n If a class does not (explicitly) extend
another class then it implicitly extends the
Object class.

n This class is the parent of all classes.
n Methods:

¡ equals(), toString(), clone(), finalize(), …
n Overriding some of these methods can be

useful to add functionality
¡ equals() -- actually test meaningful equality

24

Tuesday, April 17, 2012

25

Inheritance and Constructors
n Constructors of a class are not inherited by its

descendants.
n In each constructor of a derived class, we must

make a call to the constructor of the base class by
calling: super();
¡ This must be the first statement in the constructor.

n If this statement is not present, the compiler
automatically adds it as the first statement.

n You may optionally call some other constructor of
the base class, e.g.: super(“some string”);

n As always, if we do not define any
constructor, we get a default constructor.

Tuesday, April 17, 2012

26

Constructors and inheritance
n For all classes, calls to the constructors are

chained all the way back to the constructor for the
Object class.

n Recall that it is also possible to call another
constructor of the same class using the this
keyword.

n However, this must also be the first statement of
the constructor!

n A constructor cannot call another constructor of
the same class and the base class.

Tuesday, April 17, 2012

27

Constructors

class Sup(){
 public Sup(){

}
public Sup(int i){
}

}

class Sub extends Sup{
public Sub(){
 this(‘x’);
}
public Sub(char c){
 …
}
public Sub(int i){
 super(i);
 …
}

}

Sup sup1, sup2;
Sub sub1, sub2, sub3;

sup1 = new Sup();
sup2 = new Sup(7);

sub1 = new Sub();
sub2 = new Sub(‘y’);
sub3 = new Sub(5);

class Sub extends Sup{
public Sub(){
 this(‘x’);
}
public Sub(char c){
 super();
 …
}
public Sub(int i){
 super(i);
 …
}

}

class Sup(){
public Sup(){
 super();
}
public Sup(int i){
 super();
}

}

Added
by the
compiler

Tuesday, April 17, 2012

28

Example: Account

class Account {
 protected String ownerName;
 protected int socialSecNum;
 protected float balance;

 public Account() {
 this(“Unknown”, 0, 0.0);
 }
 public Account(String name, int ssn) {
 this(name, ssn, 0.0);
 }
 public Account(String name, int ssn, float bal) {
 ownerName = name;
 socialSecNum = ssn;
 balance = bal;
 }
 . . .

}

Tuesday, April 17, 2012

29

Savings Account

class SavingsAccount extends Account{

 protected static final float MIN_BALANCE=100.0;

 protected static final float OVERDRAW_LIMIT=-1000.0;

 protected static final float INT_RATE=5.0;

 public SavingsAccount (String name, int ssn) {
 this(name, ssn, 0.0);
 }
 public SavingsAccount (String name, int ssn, float bal) {
 super(name, ssn, bal);

 if (bal < MIN_BALANCE)
System.out.println(“Insufficient starting funds”);

 }

 . . .
}

Tuesday, April 17, 2012

30

Checking Account

class CheckingAccount extends Account{

 protected static final float MIN_INT_BALANCE=100.0;

 protected static final float INT_RATE=1.0;

 public CheckingAccount (String name, int ssn) {
 this(name, ssn, 0.0);
 }
 public CheckingAccount (String name, int ssn, float bal) {
 super(name, ssn, bal);

 if (bal < 0)
 System.out.println(“Insufficient starting funds”);

 }

 . . .
}

Tuesday, April 17, 2012

31

Super keyword

n The super keyword is a call to the constructor of
the parent class.

n It can also be used to call a method of the parent
class:

 super.methodA();
n This can be useful to call an overridden method.
n Similarly, it can be used to access data members

of the parent.

Tuesday, April 17, 2012

32

super keyword example.

class Sup {
methodA(){
}
methodA(int i){
}

}

class Sub extends Sub{
methodA(){
}
methodB(){
 methodA();
 this.methodA();
 super.methodA();
 methodA(7);
 methodA(‘x’);
}

}

Tuesday, April 17, 2012

33

Quiz

class Sup {
methodA(){
}
methodA(int i){
}

}

class Sub extends Sup{
methodA(){
}
methodA(String s){
}

}

 Sup sup = new Sup();
 Sub sub = new Sub();

 sub.methodA(‘s’);

n Which method is executed for the method call?

A
B

C
D

Tuesday, April 17, 2012

Polymorphism

34

Tuesday, April 17, 2012

35

Polymorphism

n Polymorphism allows a variable of a given
class to refer to objects from any of its
descendant classes

n For example, if Elephant and Tiger are
descendant classes of Mammal, then we can:

Mammal someMammal;

someMammal = new Elephant();

. . .

someMammal = new Tiger();

Tuesday, April 17, 2012

36

Bank Account Collection

n Polymorphism naturally allows us to manage
all accounts using a single collection:

Account localAccounts = new Account[100];

. . .

localAccounts[0] = new SavingsAccount(“Jane”, 77788777, 1000);

localAccounts[1] = new CheckingAccount(“John”, 32432523, 100);

localAccounts[2] = new SavingsAccount(“Kim”, 78687655, 2000);

. . .

Tuesday, April 17, 2012

37

Polymorphic method
n Polymorphism also makes it easy to execute the

correct method.
n E.g, to compute the interest for all accounts:

for (int i = 0; i < 100; i++) {

 localAccounts[i].accrueInterest();

}

• If localAccounts[i] refers to a SavingsAccount object, then
the accrueInterest() method of the SavingsAccount class
is executed.

• If localAccounts[i] refers to a CheckingAccount object,
then the accrueInterest() method of the CheckingAccount
class is executed.

Tuesday, April 17, 2012

38

Dynamic Binding

n At compile time, it is not known which
version of a polymorphic method will get
executed
¡ This is determined at run-time depending upon

the class of the object
n This is called dynamic (late) binding
n Each object of a subclass is also an object

of the superclass. But not vice versa!
n Do not confuse dynamic binding with

overloaded methods.

Tuesday, April 17, 2012

39

Object Type

n Consider the inheritance hierarchy:
 Object ← Mammal ← Bear
n An object of class Bear is also an object of

classes Mammal and Object.
n Thus we can use objects of class Bear wherever

we can use objects of class Mammal.
n The reverse is not true.
n A reference of type Mammal can refer to an

object of type Bear. However if we want to access
the functionality of Bear on that object, we have
to type cast to type Bear before doing that.

Tuesday, April 17, 2012

Polymorphism benefits

n Consider a student class which requires
the student to have an account.

n Can use polymorphism to easily achieve
this.
¡ e.g., Account acct;

n Account can be the type for method
parameters and also return types.

n Examples

40

Tuesday, April 17, 2012

class Bat extends Animal {
eat() { ... }

fly() { ... }
}

41

Polymorphism example

Bat bat = new Bat();
Animal beast;

beast = bat;

beast.eat();

((Bat) beast).fly();

Bat bat1 = (Bat) beast;
 bat1.eat
();
 bat1.fly
();

Note: beast.fly()
will not compile.

Casting to Bat will work,
but a runtime exception
(ClassCastException)

will
be thrown if the object

is not really a Bat object.
:Bat

bat

beast

bat1

class Animal {
 eat() { ... }
}

Tuesday, April 17, 2012

class Sup {
 methodA() { ... }

 methodA(String s) { ... }
}

class Sub extends Sup {
methodA(int i) { ... }

methodA() { ... }
}

42

Example

Sub sub = new Sub();
Sup sup;

sup = sub;

sup.methodA();

((Sub)sup).methodA();

sub = (Sub)sup;

sub.methodA();

sub.methodA(“test”);

Tuesday, April 17, 2012

43

The instanceof Operator

n The instanceof operator can help us
discover the class of an object at runtime.

n The following code counts the number of
Savings accounts.

new savingsAccCount = 0;

for (int i = 0; i < numActs; i++) {

 if (localAccounts[i] instanceof SavingsAccount) {

 savingsAccCount ++;

 }

}

Tuesday, April 17, 2012

Abstract Classes & Methods

44

Tuesday, April 17, 2012

45

Abstract Superclasses and Methods

n Super classes are useful for grouping
together common data and code.

n In some cases, we can have objects of a
superclass.
¡ e.g., Account -- generic type of account.

n In other cases, superclass objects are not
needed.
¡ e.g., Mammal -- all objects must have some

more details (Dog, Cat, ...).
¡ to disallow object of a class, we can make it

abstract.

Tuesday, April 17, 2012

Abstract class

n A class is an abstract class if
¡ it has the abstract modifier,
¡ one or more of its methods have the abstract modifier (and

no body), or
¡ it inherits an abstract method for which it does not provide

an implementation (body).

46

public abstract class Mammal {

 ...

}

public class Polygon {

 public abstract float computeArea();

}

n No instances of an abstract class can be created.
n private and static methods cannot be abstract methods.

Tuesday, April 17, 2012

Abstract class example

47

abstract class Account {
 protected String ownerName;
 protected int socialSecNum;
 protected float balance;

 public Account(String name, int ssn) {
 this(name, ssn, 0.0);
 }
 public Account(String name, int ssn, float bal) {
 ownerName = name;
 socialSecNum = ssn;
 balance = bal;
 }
 public String getName() {
 return ownerName;
 }
 public String getSsn() {
 return socialSecNum;
 }
 public float getBalance() {
 return balance;
 }
 public void setName(String newName) {
 ownerName = newName;
 }
 public abstract void accrueInterest();
 public abstract void withdraw(float amount);
 public void deposit(float amount) {
 balance += amount;
 }
}

class SavingsAccount extends Account{

 protected static final float

MIN_BALANCE=100.0;

 protected static final float

OVERDRAW_LIMIT=-1000.0;

 protected static final float

INT_RATE=5.0;
 public void accrueInterest() {. . .}
 public void withdraw(float amount) {. . . }
}

class CheckingAccount extends Account{

 protected static final float

 MIN_INT_BALANCE=100.0;

 protected static final float

 INT_RATE=1.0;

 public void accrueInterest() {. . . }
public void withdraw(float amount) {. . .}

}

Tuesday, April 17, 2012

48

Abstract example (contd.)
n Non-private members of the abstract parent class are inherited.
n Note: constructors are not inherited! Default constructor calls super!

public class Test {

public static void main(String[] args){
 Account a;
 SavingsAccount s;
 CheckingAccount c;

 a = new Student();
 s = new SavingsAccount(“John”, 78787887);
 s = new SavingsAccount();
 c = new CheckingAccount();

 System.out.println(s.getName());
 System.out.println(c.getName());
 }

}

Cannot instantiate
abstract class.

Error: constructor not
inherited!

Inherited from abstract
parent class.

Tuesday, April 17, 2012

Interfaces

49

Tuesday, April 17, 2012

© Sunil Prabhakar Purdue University

Interfaces in Java

n Interfaces are Java’s solution to multiple
inheritance.

n In some languages (e.g., C++) a class
can inherit from multiple classes
¡ causes complications

n Java classes can only inherit from one
other class

n Interfaces do not provide shared code,
they only require certain behavior.

50

Tuesday, April 17, 2012

© Sunil Prabhakar Purdue University

Recall: ActionListener interface
n Consider the addActionListener() method
n What is the type of its argument?
n Any object could be a listener

¡ void addActionListener(Object listener)?
n E.g,. a Pet object or a Dog object could

be listeners.
n We will call the actionPerformed() method

on this listener, so must ensure that this
method exists for the listener object.

n How?
51

Tuesday, April 17, 2012

© Sunil Prabhakar Purdue University

Possible solution

n Declare the argument to be of type Object
¡ Can’t ensure that the method exists

n How about creating a subclass of Object,
called ListenerObject with this method?

n Now, each listener object’s class must
extend ListenerObject
¡ this could work for Pet
¡ but not for Dog (since Dog extends Pet

already)!

52

Tuesday, April 17, 2012

© Sunil Prabhakar Purdue University

ActionListener Interface

n An interface is the ideal solution.
n The ActionListener interface defines the

necessary method
n The data type of listener is ActionListener:

¡ void addActionListener(ActionListener listener)
n Thus we must pass an object from a

class that implements this interface
n An interface is not a class -- we cannot

create instances of an interface.
53

Tuesday, April 17, 2012

© Sunil Prabhakar Purdue University 54

The Java Interface
n An interface is like a class, except it has only

constants and abstract methods.
¡ An abstract method has only the method

header, or prototype. No body.
n Interfaces specify behavior that must be

supported by a class.
n A class implements an interface by providing

the method body to the abstract methods
stated in the interface.

n Any class can implement an interface.
n A class can implement multiple interfaces.

Tuesday, April 17, 2012

