
SHELDON DSP
TUTORIAL

Dan Horvath

dhorvath@purdue.edu

Ver. 1.0 September 30, 2014

DSP HARDWARE
OVERVIEW

PCI
Bus

Host
Application

Digital IO

Voltage/Current
Sensors,
Current

Commands, etc.

Position
Encoder, LEDs,

etc.

Analog IO

DSP Control
Code

PCI
Connector

100-pin Female
Connector
(Analog)

68-pin Female
Connector

(Digital)

Removable
MOD66 Daughter

Card (Analog
Functions)

Removable RAM

DSP CARD COMPONENTS

INSTALLATION

Provides power
to DSP

Distribution
System from PC
Power Supply

68-pin Female
Connector

(Digital)

100-pin Female
Connector
(Analog)

*Pins in these
connectors are
not the typical
cylindrical pins
seen in other
connectors*

CONNECTORS

SPECIFICATIONS

TI TMS320C6713

300 MHz, 32 bit

1800 MFLOP

36 Digital IO bits available

• SI-MOD6632-HG-250-16DAC Daughter

Card

• 16 differential-ended analog input channels

or 32 single-ended

• 16 Analog output channels

• All analog is 16 bits (input and output)

• Analog voltage Max +10V, Min -10V (input

and output)

• Digital output voltage 0V – 3.3V

IMPORTANT!

There is an important pinout difference
here between the two PCBs

Plugging in DSP Dist. Box WILL SHORT
VCC AND GND WHEN USING GREEN
ADAPTOR

USE THE YELLOW ONE! (No Solder
Mask)

DSP SOFTWARE
OVERVIEW

Three Components to Developing a Complete Control

System:

• Desktop Application – National Instruments

LabWindows/CVI (GUI)

• DSP Application – Texas Instruments Code Composer

Studio (code running on DSP that controls equipment)

• Library that allows PC and DSP to talk – precompiled DLL

(SIc67.dll)

Only really need to deal with first 2 for most applications, will

call the DLL functions but most likely will not need to modify

their code

SOFTWARE DEVELOPMENT

Click “Project” under “New” on

the left

Click “File”, “New”,

“Source(*.c)…”

NI LABWINDOWS/CVI
CREATING A NEW PROJECT AND SOURCE FILE

1. Type some text. “asdf” for

example

2. Then save the file.

NI LABWINDOWS/CVI
SAVING SOURCE FILE

1. Add the file to the project by right clicking
the project name and then clicking “Add
Existing File” and add the source file you
just saved.

NI LABWINDOWS/CVI
CREATING A NEW PROJECT

2. The project now shows the source file in
the project tree

NI LABWINDOWS/CVI
SAVING THE PROJECT

Right click the project name in the tree and
click “Save”

NI LABWINDOWS/CVI
CREATING A GUI

Create a new GUI by
clicking “File,” “New,”
“User Interface (*.uir)…”

NI LABWINDOWS/CVI
GUI PANEL

A blank GUI panel should
be shown.

NI LABWINDOWS/CVI
PANEL CALLBACK FUNCTION NAMING

Double click the grey area
in the newly-created
panel; the panel’s settings
window will be brought
up, shown right. In the
“Callback function” field,
type “MainPanel.” This is
the name of the function
that gets called every
time something happens
in this GUI panel (Getting
focus of the window,
exiting the window, etc.).

NI LABWINDOWS/CVI
ADD A BUTTON TO THE GUI

Click “Create,”
“Command
Button,”
“Square
Command
Button”

NI LABWINDOWS/CVI
NAMING THE BUTTON CALLBACK FUNCTION

Double click the OK
button you just
created and type a
function name into
the “Callback
Function” box.
“OkButton” is a
good function name.
Type “Toggle” in the
Label field. Click
“OK.”

NI LABWINDOWS/CVI
ADD AN LED TO THE GUI

With .uir editor in focus, Click
“Create,” “LED,” “Round LED.”

Double Click the newly-created LED.
Change “Label Appearance” field to “LED.”

With the LED selected, make Off Color
0x00FF0000,
On Color 0x0000FF00 in the menu -
bottom right

NI LABWINDOWS/CVI
ADD THE GUI FILE TO THE PROJECT

Save the .uir file. Right click project, click add existing file, and add
example.uir to the project. Then save the project.

NI LABWINDOWS/CVI
GENERATING THE MAIN FUNCTION AND CALLBACK FUNCTIONS

With .uir editor in
focus, Click “Code,”
“Generate,” “All
Code…”

This generates the
main function and
the callback
functions using the
function names
that we selected.

NI LABWINDOWS/CVI
INITIAL CODE GENERATION

The main
function is
generated, as
well as callback
functions for the
main panel and
the OK button.
These functions
don’t do
anything at the
moment.

NI LABWINDOWS/CVI
ADDING CODE TO THE OKBUTTON CALLBACK FUNCTION

Add the code shown right to
the OkButton callback
function. Declare the variable
“int temp;” before the switch
statement. GetCtrlVal() grabs
the current value(color) of
the LED. SetCtrlVal() changes
the value of the LED. The rest
of the code changes the LED
to the opposite state of the
current state. The point of
this button is to toggle the
LED between red and green
each time the button is
pressed.

NI LABWINDOWS/CVI
ADD CODE TO MAIN PANEL CALLBACK

Add the function call
“QuitUserInterface(0);” to
the “EVENT_CLOSE” case.
This will allow the application
to exit when you press the
exit button. If you forget this,
it’s semi-annoying because
you have to go into Task
Manager and kill the process.

NI LABWINDOWS/CVI
SAVE AND BUILD

Bring the .uir editor into focus and save
it (ctrl + s). Bring the code editor into
focus and save example.c.
Once all is saved, click “Build,” “Batch
Build” from the Menu Bar
Click “Release” option (checkmarked
option bottom right), and then “Build.”
If compile is successful, the message
below left will pop up.

NI LABWINDOWS/CVI
OPERATION OF THE EXECUTABLE

Run the .exe file that is produced by the build. If everything went well, you will now
have an application that you can run, and when you click the OK button, the LED color
toggles.

NI LABWINDOWS/CVI
ZONES - MOST RECENT WORKING VERSION

Shown right is the most recent
working version of the zone
application. It begins with a splash
screen to pick which coff file you
want to load (Common Object File
Format – the executable that runs
on the DSP) onto the DSP and is
equipped with an Enable DSP
button and a DSP Status bar.

NI LABWINDOWS/CVI
ZONES - ENABLE DSP CALLBACK (1/3)

The call to DLL_RESET() (the source code for which resides in the Sheldon DLL project
developed in Visual Studio) releases the DSP from reset – the parameter passed to it is
e_Enable_DSP as opposed to e_Disable_DSP which does the opposite and is used later.
SIc67_LoadCofffile() attempts to load the coff file specified in the input line. The rest of the
code on this page just does error checking and updates the DSP status window.

NI LABWINDOWS/CVI
ZONES - ENABLE DSP CALLBACK (2/3)

Syncing with the DSP involves checking a Communication Register inside the DSP’s memory
that the DSP will fill with a specific value when it is done with it’s initializations. It also grabs
the addresses of the TxBuffer in the DSP’s memory so that communication can take place.
Finally, enable the timer (more on this later).

NI LABWINDOWS/CVI
ZONES - ENABLE DSP CALLBACK (3/3)

The remainder of the Enable DSP callback is executed if nothing goes wrong in the code in the
previous two slides. All that remains is turning on an LED on the front of the DSP Dist. Box with
SIc67_SetDigOut(). SIc67_ConfigDaughterCard() sets the parameters of the analog daughter
cards to their default settings, essentially “turning the daughter card on.” This function call to
configure the analog card unfortunately overwrites the DIO direction setting in the DSP code
and so the direction must be set back to what we want it to be for this application – a fix that
is being explored currently is to set the Daughter Card parameters individually rather than
using a bulk “default” setting that also tampers with the digital I/O direction registers.

NI LABWINDOWS/CVI
ZONES - MAIN PANEL

After clicking the
Enable DSP button,
this GUI shown right
pops up and will allow
the user to control the
equipment in the zone
by communicating
with the DSP about
contactor states, and
voltage/current
references sensor
readings, etc.

NI LABWINDOWS/CVI
ZONES - A NOTE ABOUT BUTTONS

The button to the left is called a picture ring button. Like the
switch on the right, it shows two different pictures depending on
the state of the button, but these pictures are user-selectable.

To select which
pictures display,
double click the
picture ring button
to bring up its
settings, and click on
“Image/value pairs”

NI LABWINDOWS/CVI
ZONES - TIMER

Timer that allows you to
execute code on every “Timer
Tick.” The interval is set to .2
seconds in this application.

NI LABWINDOWS/CVI
ZONES - TIMER CALLBACK (1/2)

All of the number boxes in the GUI need updating. On every timer tick, we grab the list of
variables from inside the DSP with a call to SIc67_ReadDSPComm. Then we update all the
number boxes.

NI LABWINDOWS/CVI
ZONES - TIMER CALLBACK (2/2)

Additionally, we grab the current state of the
on/off switches in the GUI to control the
contactor coils and tell the DSP to change it’s
digital outputs based on the buttons.

NI LABWINDOWS/CVI
FURTHER INFORMATION

This was certainly not a comprehensive tutorial of LabWindows. For more advanced
topics, view Getting Started with LabWindows/CVI from National Instruments

http://www.ni.com/pdf/manuals/373552g.pdf

Additionally, the control panels developed in LabWindows/CVI for the M44 systems are
further developed than the zones are currently and serve as a good reference for well-
working code.

http://www.ni.com/pdf/manuals/373552g.pdf

NI LABWINDOWS/CVI
A NOTE ABOUT THE SIC67 DLL

When you include the SIc67 DLL in your
project to communicate with the DSP,
the .exe that Labwindows creates when
you build the project now requires
administrator privileges.

To allow those on powerlab accounts to
run the executables, someone with
admin password needs to make a .xus
file as shown left, which will allow any
executable with the filename you
specify to run without admin privileges.

TI CODE COMPOSER STUDIO
STARTING CCS

1. Open Code Composer Studio
2. It will prompt you to choose a directory for your workspace

TI CODE COMPOSER STUDIO
OVERVIEW OF WORKSPACE

The default project from
Sheldon Instruments is shown
in the project tree (left). There
are 8 C files. The only one that
needs to be modified is
“c6711ini_plx.c,” all the others
are for functionality we don’t
need to alter *.

Make sure the project is set to
build in “Release” mode in the
build (hammer) drop down
menu.

When you are satisfied with
your code, click the hammer to
build it. The “coff” file
(filename.out) will be put into
the Release directory.

*For more information on the
other 7 C files, see document
sidsp_api_supplement.rtf

TI CODE COMPOSER STUDIO
EXAMPLE SYSTEM TO CONTROL

Example
Let’s say we wanted to control a DC-DC converter with the following control block
diagram.

We need to measure the output voltage of the converter, and run a control loop.

TI CODE COMPOSER STUDIO
THE MAIN FUNCTION - INITIALIZATIONS

Lines 160 – 182: Here we configure the system with the function
SI_HW_InitDSP6711(), and configure the timer interrupt to run at 10 kHz, add the
ISR and enable it. Additionally, set direction of digital I/O.

Lines 184 – 187:
Put the address of the
TxBuffers in Communication
Registers 14 & 15 so the host
can grab them and know
which addresses the variables
of interest may be found at.
The last step is to put a
certain hex value into
Communication Register 16 –
0x600DC0DE (“Good Code”) –
to sync up with host.

TI CODE COMPOSER STUDIO
THE MAIN FUNCTION – INFINITE WHILE LOOP

Now is one of the few times in your life that
you actually do want a while(1) loop. Don’t
worry about the inability to get out of the
while loop; when you click the Disable DSP
button in the GUI, the DSP will be held in reset
externally until you click the Enable DSP button
to download a new coff file, and allow the code
to be executed.

The important component of the infinite while
loop is the filling of the TxBuffer with variables
of interest. The host will grab them with a
function call to SIc67_ReadDSPComm() in the
LabWindows code. The rest has to do with the
default heartbeat message variables that were
set up by Sheldon Instruments in their factory
CCS project – we could remove them.

TI CODE COMPOSER STUDIO
EXAMPLE INTERRUPT SERVICE ROUTINE CODE

The interrupt service routine
(ISR) shown right shows how to
do basic analog inputs, digital
inputs as well as analog outputs
and digital outputs. Always read
the inputs IN THE VERY
BEGINNING of the ISR. This
ensures regular sample periods.
This ISR is a way to implement
the control diagram shown
earlier.

Reminder: Don’t forget to reset
the interrupt flag!

TI CODE COMPOSER STUDIO
ANALOG INPUT AND OUTPUT SCALING

Voltage at
pins

Converted to
int

10.0 V 0xDDDD7FFF

5.0 V 0xDDDD3FFF

0.0 V 0xDDDD0000

-5.0 V 0xDDDDC000

-10 V 0xDDDD8000

Note: The 16 most significant bits don’t matter (represented by D’s) when
you declare AIN_0 as a short int. The DSP will only acknowledge the 16
least significant bits. Both ADC and DAC are 16-bit analog hardware. We
are used to the M44s which pack two 16-bit analog values into a single
32-bit word.

The analog hardware doesn’t accept floating point format directly; there is a conversion that
must take place beforehand. This is achieved by casting in C, either casting to int or casting to
float. Values input into outpDAC() macro must be of int data type.
The readADC() macro returns an int.

Mask off most sig upper 16 bits

216 = 65536, divided into +/- halves, bit 16 is sign bit
0x7FFF → 32767
0x8000 → -32768 (Think 0xFFFF – 0x7FFF = 0x8000)

GOOD PRACTICE

• We want to preserve these DSPs as long as
we can

• Test your circuit to be sure that it is not
going to have any voltage higher than the
+/- 10V that it is rated for on the analog
side, and the 3.3V on the digital side

• You can use bidirectional TVS diodes to
clamp voltage waveforms past +/- 10V

• Spice the circuit!
• Don’t drive LEDs directly from the output of

the DSP – they can’t provide that much
current without damaging the outputs – use
a buffer.

• Use isolators where possible on logic signals

FOR MORE INFORMATION

See these docments in the C:\SIC67DSP-Sidev folder on all the new lab PCs with a
Sheldon Instruments DSP

Hardware Capabilities:
• Sheldon Instruments’ pdf manual of the DSP system - SIC671xPCI_r1b.pdf
• Sheldon Instruments’ pdf manual for the mod66 daughter card - mod66xx_R02.pdf

Software:
• Using the sisample utility provided by Sheldon Instruments - gettingstarted.pdf
• Documentation for code used on DSP side in CCS - sidsp_api_supplement.rtf
• Documentation for SIc67 DLL code - siddk_api_supplement.rtf
• Anything in the C:\SIC67DSP-SIdev directory related to this DSP card (there is

information for other DSP cards from Sheldon Instruments in this folder!)

