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The combination of decentralized control and networked
control where control loops are closed through a network
is called Decentralized Networked Control System (DNCS).
This paper introduces a general framework that con-
verts a generic decentralized control configuration of non-
networked systems to the general setup of a Networked Con-
trol Systems (NCS). Two design methods from the litera-
ture of decentralized control for non-networked systems were
chosen as a base for the design of a controller for the net-
worked systems, the first being an observer-based decentral-
ized control, while the second is the well-known Luenberger
combined observer-controller design. The main idea of our
design is to formulate the DNCS in the general form and then
map the resulting system to the general form of the NCS.
First, a method for designing decentralized observer-based
controller is discussed. Second, an implementation using a
network is analyzed for the two designs. Third, two meth-
ods to analyze the stability of the DNCS are also introduced.
Fourth, perturbation bounds for stability of the DNCS have
been derived. Finally, examples and simulation results are
shown and discussed.

1 Introduction
Decentralized control is used when there is a large scale

system (LSS) whose sub-systems have interconnections with
existing constraints on data transfer between them. Unlike
centralized control, the decentralized control can be robust
and scalable especially to the systems that are distributed
over a large geographical area. The main feature of decen-
tralized control is that it uses only local information to pro-
duce control laws [1].

The recent research efforts in the area of control sys-
tems have paved the way to better understand and interact
with large-scale decentralized modern control systems [4, 6,
23]. To mention a few, large-scale Networked Control Sys-
tems (NCS) can be found in many diverse applications, such
as: transportation networks, smart-grids, digital communica-
tion systems, and robotics. Since communication networks
are an essential component of these systems, the analysis of
a networked version of decentralized control systems is be-
coming crucial. The objective of this paper is to introduce a
general framework that converts a generic decentralized con-
trol configuration of non-networked systems to the general
setup of an NCS.

1.1 Decentralized Control
The decentralized control methodology, in many cases,

is intended to replace the complex, expensive, and imprac-
tical applications of centralized control. A main field of
decentralized control is the large-scale interconnected sys-
tems. Transportation systems, communication networks,
power systems, economic systems, manufacturing processes
and many others, are examples where decentralized control
is used. The main idea behind designing decentralized con-
trollers is the use of local information to achieve global re-
sults.

In this paper we are considering the observer-based de-
centralized control design for large-scale interconnected sys-
tems where the feedback loops are closed through a network.
The robust design of the decentralized control strategies has
been introduced in [4–6]. In [7], the authors proposed an
observer-based control algorithm for linear systems where
the design uses low-order linear functional observers. The



individual subsystem states are estimated in [8, 9] by using
an observer where the separation principal needs informa-
tion exchange between subsystems in order to be utilized.
Observer-based control design for non-linear systems is in-
troduced in [10–13]. The key feature of the design proposed
in [10] is that the separation principle of the linear systems
case holds in their design for the non-linear system.

1.2 Networked Control Systems
The digital and computation progress spur the develop-

ment of distributed control systems. These modern systems
which include sensors and actuators that are controlled via a
centralized or decentralized controllers, are connected by us-
ing a shared communication medium. This type of real-time
networks are called networked control systems (NCS) [14].

NCS applications can be found in passenger cars, trucks
and buses, aircraft and aerospace electronics, factory au-
tomation, industrial machine control, medical equipment,
mobile sensor networks and many more [17]. However
the NCS can potentially increase system reliability, reduce
weight, space, power and wiring requirements, there are con-
straints that limit the applications. Generally, these limita-
tions arise from multiple-packet transmission, data packet
dropouts and finite bandwidth that is, only one node can
access the shared medium at a time. Conventional control
theories having ideal assumptions, such as synchronization
of the control or non-delayed sensing and actuation, have to
be reevaluated to take the network effects in account before
they are applied to NCS. Basically, the primary objective of
NCS analysis and design is to efficiently use the finite bus
capacity while maintaining good closed-loop control system
performance [16].

1.3 Decentralized Networked Control Systems
It is noteworthy to mention that NCSs and decentral-

ized control applications do often overlap, which adds to the
significance of studying and analyzing Decentralized Net-
worked Control Systems (DNCS). Generally, decentralized
control is used when there is a large scale system (LSS)
whose sub-systems have interconnections with existing con-
straints on data transfer between them. The problem of de-
centralized control can be viewed as designing local con-
trollers for subsystems comprising a given system. Decen-
tralized control is especially viable for systems whose sub-
systems are separated geographically. Unlike centralized
control, the decentralized control can be robust and scalable
especially to the systems that are distributed over a large ge-
ographical area. The main feature of decentralized control is
that it uses only local information to produce control laws.

It is very common to see systems which include sensors,
actuators and controllers are connected through a shared
communication medium. Some advantages of connecting
the system components via network compared to traditional
point-to-point control systems are modularity, flexibility of
the system design, and simplicity of implementation such as
reduced system wiring and configuration tools. Considering
the benefits of decentralized control and the fact that modern

control systems are increasingly becoming networked con-
trol systems, the area of decentralized networked control sys-
tems (DNCS) has recently emerged [23].

Figure 1 shows the overall structure of a Decentralized
Networked Control System (DNCS) model. In this system
example, we have three dynamical systems modeling the
plant behavior:

ẋi = f i(xi,ui,wi, t)

yi = hi(xi,ui,wi, t), ∀i = 1,2,3,

and N controller dynamical systems:

żi = gi(zi,ri,vi, t),

pi = qi(zi,ri,vi, t), ∀i = 1, . . . ,N,

where xi and zi are the states of the plant and controller,
ui,ri are the plant and controllers’ inputs, wi and vi are the
possible disturbances, noises, or attacks against the system.
Sensors (α

( j)
i ) and actuators (s( j)

i ) form networks that are
inherently connected to the plant. Through sensors, the
plants’ outputs are sent to the controllers via the network,
and the controllers’ commands are sent back to the actuators,
through the network as well.

1.4 Research Gaps, Paper Preliminaries, Contributions
and Organization

As mentioned in the abstract and introduction, the ob-
jective of this paper is to introduce a general frameowrk
that converts a generic decentralized control configuration
of non-networked systems to the general setup of an NCS.
To our knowledge, there is no similar framework in the re-
cent DNCS literature to the one we are proposing. In this
paper, we are addressing this research gap with the formu-
lation of the framework. In order to introduce the proposed
framework, a decentralized control design scheme of non-
networked systems is chosen. We consider the observer-
based control design in [7]. The authors considered the case
when there is no communication network between the sys-
tem’s components. In this paper, we analyze the case where
the control loops of the conventional decentralized controlled
system are closed through a network. We adopt a design of
the observed-based controller for the DNCS and then ana-
lyze the stability of the networked closed loop system. Two
approaches to model the network effect are chosen to analyze
the stability of the DNCS.

The contributions in the paper are as follows:

1. Development of a general framework that converts
a generic decentralized control configuration of non-
networked systems to the general setup of NCS

2. Applying the general framework for two different de-
signs of decentralized control

3. Analysis of the closed-loop system stability of the
DNCS through two approaches for the two designs



Fig. 1. Example of an NCS Configuration.

4. Derivation of the perturbation bounds of the networked
system.

The remainder of this paper can be summarized as follows.
Section II is dedicated to the problem formulation. Sec-
tion III addresses the stability analysis and the perturbation
bounds. In section IV we introduce two examples and show
the simulation results. Conclusions and summary of the pa-
per are given in the last section.

2 Problem Formulation
To validate and test the proposed formulation for

decentralized networked control systems, and to highlight
the applicability of the DNCS framework, we choose two
designs of decentralized control. We introduce the two
designs in two different parts. In the first part, we apply a
controller design that is based on the observer-based de-
centralized control for multi-agent systems from [7], while
in the second part we consider the well-known Luenberger
combined controller-observer design from [24].

Part 1: Observer-based Decentralized Control

In this part of the problem formulation, we first intro-
duce a decentralized observer-based control method from
the literature of non-networked systems as a controller

design for the networked systems. Then, we map the closed-
loop non-networked system formulation to the equivalent
configuration in networked dynamical systems. The last
step in our problem formulation of this part is augmenting
the state of the network induced error with the state of the
closed-loop system. This will facilitate in applying the
stability analysis tools from the NCS literature.

2.1 Observer Based Control Design Formulation
In this paper, we are considering the observer based con-

trol design from [7]. We have a large-scale system where the
plant dynamics are described as follow:

 ẋ = Ax+
N

∑
i=1

Biui

yi =Cix, i = 1,2, . . . ,N
(1)

where x ∈ Rn is the state vector of the plant of the large-
scale system, ui ∈ Rmi is the input vector of the ith subsys-
tem and yi ∈ Rpi is the output vector of the ith subsystem.
A ∈ Rn×n,Bi ∈ Rn×mi ,and Ci ∈ Rpi×n are all real constant
matrices. Let{

u =
[
u>1 . . . u>N

]> , y =
[
y>1 . . . y>N

]>
B =

[
B1 . . . BN

]
, C =

[
C>1 . . . C>N

]>
.



Then the plant can be written in the following compact form:

ẋp = Apxp +Bpup

y = Cpxp.

We assume the following as in [7]:

Assumption 1. The triplet (Ap,Bp,Cp) is controllable and
observable.

Assumption 2. The triplets (Ap,Bi,Ci) are stable if there
exist decentralized fixed modes that are associated with the
triplets.

Assumption 3. There exists a complete decentralized
structure of the information of each subsystem (i.e., only the
local output and control law of each subsystem are avail-
able).

Assumption 4. Global state feedback control exists such
that u =−Fx, where F ∈ Rm×n.

The global state feedback control gain F can be obtained by
using any standard state feedback control method. Partition-
ing the global controller u, we get,


u1
u2
...

uN

=−


F1
F2
...

FN

x.

In [7], the authors proposed the following decentralized con-
troller:

ui =−F ix≈−(KiLi +W iCi)x≈−Kizi−W iyi,

where zi ∈ Roi is an estimate of the weighted plant state (zi
tracks Lix) that has the following dynamics:

żi = E izi +LiBiui +Giyi, (2)

where

E i ∈ Roi×oi ,Li ∈ Roi×n,Ki ∈ Rmi×oi ,W i ∈ Rmi×pi

and Gi ∈ Roi×pi

are real matrices that represent the controller design parame-
ters [7], and

F i ≈ KiLi +W iCi. (3)

The observation error vector is defined as:

eoi = zi−Lix, i = 1,2, . . . ,N.

Therefore, the observation error dynamics are:

ėoi = żi−Liẋ.

After some simple manipulations, we obtain the following
equation:

ėoi= E ieoi +(GiCi−LiA+E iLi)x−LiBriur. (4)

Bri is a partition of B, B =
[
Bi Bri

]
, where Bri ∈ Rn×(m−mi)

is the input matrix for ur(t) which contains (N − 1) input
vectors of the remaining (N−1) subsystems. With this par-
ticular partition of the input matrix B, the dynamics of the
plant states are:

ẋ = Ax+Biui +Briur, i = 1,2, . . . ,N.

Choosing E i to be asymptotically stable, (2) can be viewed
as a decentralized linear observer if Li and Gi fulfill the fol-
lowing set of constraints:

LiBri = O (5)
KiLi +W iCi = F i (6)

GiCi−LiA+E iLi = O , (7)

To compute the four unknowns (Ki,Li,W i,Gi), we are using
a simpler approach other than the one proposed in [7]. Our
approach is as follows. From (5), we can find Li:

Li =
(

Null(B>ri
)
)>

.

Note that Li is not unique. To find Ki,W i,Gi we use the
Kronecker product properties. From (6), we get:

(L>i ⊗ Imi)vec(Ki)+(C>i ⊗ Imi)vec(W i) = vec(F i),

then,

[
L>i ⊗ Imi C>i ⊗ Imi

][vec(Ki)
vec(W i)

]
= vec(F i). (8)

Since we chose E i and computed Li, (7) has only one un-
known which is Gi. Let LiA−E iLi =V i. Now we have

GiCi =V i.



Fig. 2. Observer-Based Control Design Scheme.

Using the Kronecker product properties again we get:

(
C>i ⊗ Ioi

)
vec(Gi) = vec(V i). (9)

Combining (8) and (9), we get:

[
L>i ⊗ Imi C>i ⊗ Imi O

O O C>i ⊗ Ioi

]
︸ ︷︷ ︸

Ψ

vec(Ki)
vec(W i)
vec(Gi)

 (10)

=

[
vec(F i)
vec(V i)

]
.

Solving (10), we get:

vec(Ki)
vec(W i)
vec(Gi)

= Ψ
†
[

vec(F i)
vec(V i)

]
,

where Ψ
† is the pseudo-inverse for Ψ.

After solving for the system design unknowns, we now
have all the design parameters. Figure 2 shows the large-
scale closed-loop system where the observer-based control
design is applied in the feedback loops of each subsystem.

Fig. 3. DNCS State-Space Configuration (2).

2.2 Mapping the DNCS to the NCS Setup
The general setup of a DNCS is shown in Figure 3. The

state-space representation for the plant is:

{
ẋp = Apxp +Bpû
y =Cpxp +Dpû, (11)

where {
Bp =

[
Bp1. . .BpN

]
, Cp =

[
C>p1

. . . C>pN

]>
y =

[
y>1 . . . y>N

]> , û =
[
û>1 . . . û>N

]>
.

The controller state-space representation is given by:

{
ẋc = Acxc +Bcŷ
u =Ccxc +Dcŷ, (12)

where,

{
Bc =

[
Bc1. . .BcN

]
, Cc =

[
C>c1

. . . C>cN

]>
u =

[
u>1 . . . u>N

]> , y =
[
ŷ>1 . . . ŷ>N

]>
.

To analyze the stability of the overall system under the
proposed observer-based decentralized control design, we
convert the DNCS setup to the general setup of the NCS,
as shown in Figure 4. The delayed versions of u and y are
defined as: û = u−enu and ŷ = y−eny, where enu and eny are
the delay error due to the presence of the network.

Now we map the decentralized controller to the typical
NCS form of the controller.

żi = E izi +LiBiui +Giŷi

= E izi +LiBi(−Kizi−W iŷi)+Giŷi

= (E i−LiBiKi)zi +(Gi−LiBiW i)ŷi.



Fig. 4. Mapping DNCS to the Typical NCS Setup.

Let xc = z, where z =
[
z>1 z>2 . . . z>N

]>, and introduce the
following compact matrix notation:



E = diag(E1,E2, . . . ,EN),
K = diag(K1,K2, . . . ,KN),

L =
[
L>1 L>2 . . . L>N

]>
,

Bp =
[
B1 B2 . . . BN

]
,

G = diag(G1,G2, . . . ,GN),
W = diag(W 1,W 2, . . . ,W N).

Therefore, we now have a compact form of the controller’s
dynamics:

{
ż = (E−LBK)z+(G−LBW )ŷ
u = (−K)z+(−W )ŷ (13)

Knowing that ŷ = y− eny, we can map (13) to the standard
NCS state-space form of the controller from (12):

ẋc = Acxc +Bcŷ, ŷ =Cpxp− eny,

then,

ẋc = Acxc +BcCpxp−Bceny, (14)

where {
Ac = E−LBpK , Bc = G−LBpW
Cc =−K , Dc =−W .

The plant state dynamics can be represented as:

ẋp = Apxp +Bpu−Bpenu.

The controller’s output u can be written as:

u = −Kz−Wŷ

= −Kxc−W (y− eny)

= −Kxc−WCpxp +Weny.

Recall that û= u−enu and by substituting u in the plant state-
space dynamics equation, we get:

ẋp = (Ap−BpWCp)xp−BpKxc +BpWeny−Bpenu. (15)

2.3 Network Effect Augmentation with the System’s
States.

In this section we first find the dynamics of the network-
induced error. After finding an expression for the networked-
induced error, we then augment the error dynamics with
the general state of the closed-loop system. The network-

induced error is defined as: en =
[
e>ny e>nu

]>
. Note that in

our system Dp = O, thus y = Cpxp. Recall that ŷ = y− eny.
In addition,

u =Ccxc +Dcŷ. (16)

The networked-induced error can be written as:

en =

[
eny

enu

]
=

[
y− ŷ
u− û

]
=

[
Cpxp− ŷ

Ccxc +Dcŷ− û

]
.

Note that ŷ and û are both piece-wise constant functions,
thus: ˙̂y = 0, and ˙̂u = 0. Then,

ėn==

[
Cpẋp
Ccẋc

]
=

[
CpApxp +CpBpu−CpBpenu

CcAcxc +CcBcCpxp−CcBceny

]
.



ėn =

[
(CpAp +CpBpDcCp)xp +CpBpCcxc−CpBpDceny −CpBpenu

CcBcCpxp +CcAcxc−CcBceny

]
. (17)


ẋp
ẋc
ėny
ėnu

=


Ap +BpDcCp BpCc −BpDc −Bp

BcCp Ac −Bc O
(CpAp +CpBpDcCp) CpBpCc −CpBpDc −CpBp

CcBcCp CcAc −CcBc O


︸ ︷︷ ︸

Â


xp
xc
eny
enu

 . (18)

Substituting (16) into the error dynamics we have (17).
Let x be the overall state of the closed loop system:

x =
[
x>p x>c

]>
. Let w be the general state vector that in-

cludes the network-induced error vector: w =
[
x> e>n

]>.
From (14)-(17), we can formulate the general state dynamics
of the system as in (18).

Equation (18) combines the nominal closed-loop system
and the perturbation that represents the network effect.

Part 2: Combined Observer-Controller Design

In this part of the problem formulation, and to validate
the proposed framework and test the applicability of the
DNCS scheme, we consider another controller design. In
this formulation, we consider the well-known Luenberger
combined controller-observer design method. We consider
the system as described in Figure 5, where the plant state
and the control are distributed over N subsystems.

We have the following system

{
ẋi = Aixi +Biûi
yi =Cixi.

(19)

Let,


Bp =

[
B1. . .BN

]
, Cp =

[
C>1 . . . C>N

]>
y =

[
y>1 . . . y>N

]> , û =
[
û>1 . . . û>N

]>
xp =

[
x
(1)>
p . . . x

(N)>
p

]>
,

Ap = diag(A1, . . . ,AN).

We can now formulate the global dynamics of the plant in a
compact form, consisting of N subsystems:

{
ẋp = Apxp +Bpû
y =Cpxp.

(20)

Since we are adapting the Luenberger combined
controller-observer design, and given that we have N differ-
ent controllers with respective feedback control and observer

Fig. 5. Distributed State of the Plant and Distributed Control.

gains (i.e., KLi ,LLi ), we can derive a compact state-space rep-
resentation of the global combined controller-observer state:

{
ẋc = Apxc +Bpu+LL(ŷ− ỹ)
u =−KLxc,

(21)

where
xc =

[
x̃>1 . . . x̃>N

]> , ỹ =
[
ỹ>1 . . . ỹ>N

]>
ŷ =

[
ŷ>1 . . . ŷ>N

]> , KL = diag(KL1 , . . . ,KLN ).
LL = diag(LL1 , . . . ,LLN ).

Writing the estimated output in a compact form (y = Cxc),
and with simple manipulations to the combined controller-
observer system dynamics equation, we can write a standard
compact form for the controller of the networked closed-loop
system: {

ẋc = Acxc +Bcŷ
ŷ = u =Ccxc,

(22)

where

Ac = Ap−BpKL−LLCp, Bc = LL,Cc =−KL. (23)



Recall that ŷ = y− eny = Cpxp − eny and û = u− enu =
−KLxc− enu . Hence, substituting the terms in (22) and the
previous two equations, in (20) and (21), we get:

ẋp = Apxp +BpCcxc−Bpenu , (24)

and

ẋc = BcCpxp +Acxc−Bceny . (25)

Recall that the networked-induced error dynamics is defined
as:

en =

[
eny

enu

]
=

[
y− ŷ
u− û

]
=

[
Cpxp− ŷ
Ccxc− û

]
.

Since ŷ and û are both piece-wise constant functions,
thus: ˙̂y = 0, and ˙̂u = 0. Then,

ėn==

[
Cpẋp
Ccẋc

]
=

[
CpApxp +CpBpCcxc−CpBpenu

CcBcCpxp +CcAcxc−CcBceny

]
. (26)

Following the same methodology for the observer-based
decentralized control in Part 1, we can augment the gen-
eral state dynamics of the Luenberger combined controller-
observer design, in addition to the networked-induced error
state:


ẋp
ẋc
ėny

ėnu

=


Ap BpCc O −Bp
BcCp Ac −Bc O
CpAp CpBpCc O −CpBp

CcBcCp CcAc −CcBc O


︸ ︷︷ ︸

Â


xp
xc
eny

enu

. (27)

Equation (27) combines the nominal closed-loop system and
the perturbation that represents the network effect for the Lu-
enberger combined controller-observer design.

3 Stability Analysis
In this section, we analyze the stability of the DNCS. To

analyze the stability of the system, we consider two different
approaches. In the two approaches, we separate the nomi-
nal system and the perturbation using two different methods.
This is followed by deriving perturbation bounds for both
methods.

3.1 The First Approach
Let x be the overall state of the closed loop system:

x = [x>p x>c ]
>. Let w be the general state vector that augments

the state of closed-loop system and the network-induced er-
ror vector. Hence, w = [x> e>n ]

>. Based on the general state

dynamics in (18) and (27), the nominal closed-loop system
can be found when the network effect is null. Therefore, we
can separate the nominal system and the perturbation in (18)
and (27) and derive the following perturbation-separated rep-
resentations.

The observer-based decentralized control can be written
as in the following perturbation-separated formulation (28),
whereas the combined Luenberger observer-controller de-
sign can be formulated as in (29), where S represents the
dynamics of the nominal closed-loop system and ∆S repre-
sents the perturbation in the system dynamics. For stability
analysis purposes, we introduce the matrix ∆C which is used
to guarantee that (S+∆C) is Hurwitz. We can now write the
general system dynamics as:

ẇ = (S+∆C)w+(∆S−∆C)w = Scw+∆Scw. (30)

Theorem 1. For the DNCS in (11) and (12) and for any
Q = Q> �O, if the solution to the Lyapunov matrix equation

S>c P+PS>c =−2Q, Q = I

is P = P> � O, and if the norm of the perturbation ma-
trix (∆Sc) is upper bounded by:

‖∆Sc‖ ≤
1

λmax (P)

then the DNCS is globally asymptotically stable.

Proof. Since Sc is stable, then for Q = I, the solution to the
Lyapunov matrix equation:

S>c P+PS>c =−2Q, Q = I

is symmetric positive definite. Using the following candidate
Lyapunov function, V = 1

2 w>Pw. Then,

V̇ = w>Pẇ = w>PScw+w>P∆Scw.

Notice that

w>PScw =
1
2

w>S>c Pw+
1
2

w>PScw

=
1
2

w>
(

S>c P+PSc

)
w =−‖w‖2.

In addition, we have:

w>P∆Scw ≤ ‖P∆Sc‖‖w‖2 = ‖P‖‖∆Sc‖‖w‖2

= λmax(P)‖∆Sc‖‖w‖2.



ẇ =


ẋp
ẋc
ėny

ėnu

=




Ap +BpDcCp BpCc O O

BcCp Ac O O
O O O O
O O O O


︸ ︷︷ ︸

S

+∆C




xp
xc
eny

enu



+




O O −BpDc −Bp
O O −Bc O

(CpAp +CpBpDcCp) CpBpCc −CpBpDc −CpBp
CcBcCp CcAc −CcBc O


︸ ︷︷ ︸

∆S

−∆C




xp
xc
eny

enu

 . (28)

ẇ =


ẋp
ẋc
ėny

ėnu

=




Ap BpCc O O

BcCp Ac O O
O O O O
O O O O


︸ ︷︷ ︸

S

+∆C




xp
xc
eny

enu

+



O O O −Bp
O O −Bc O

CpAp CpBpCc O −CpBp
CcBcCp CcAc −CcBc O


︸ ︷︷ ︸

∆S

−∆C




xp
xc
eny

enu

 . (29)

Hence,

V̇ ≤ −‖w‖2 +λmax (P)‖∆Sc‖‖w‖2

= −(1−λmax (P)‖∆Sc‖)‖w‖2.

For a valid Lyapunov candidate function, we should have
V̇ < 0, thus:

‖∆Sc‖≤
1

λmax (P)
.

3.2 The Second Approach
In this approach we partition the augmented states

in (18) as follows:

ẇ(t) = Âw(t) =
[

A11 A12
A21 A22

]
w(t).

The state dynamics of the networked closed-loop system
can be represented as: ẋ(t) = A11x(t)+A12en(t), where

A11 =

[
Ap +BpDcCp BpCc

BcCp Ac

]
,

and

A12 =

[
−BpDc −Bp
−Bc O

]
.

Consider the time interval between transmissions: t ∈
[ti, ti+1] where i = 0,1,2, . . ., we get:

ŷ(t) = y(ti) =Cpxp(ti)

and

û(t) = u(ti) =Ccxc(ti)+Dcy(ti) =Ccxc(ti)+DcCpxp(ti).

Let g(t,x) = A12en(t), then the system dynamics equation
can be written as:

ẋ(t) = A11x(t)+g(t,x), (31)

where g(t,x) is the perturbation caused by the network. Let
ex(t) = x(t)− x(ti), then we can write the perturbation term



as:

g(t,x) = A12en(t) = A12

[
Cp O

DcCp Cc

]
︸ ︷︷ ︸

D

[
x(t)− x(ti)

]
= D

[
x(t)− x(ti)

]
= Dex(t).

Since the non-networked system is stable, then there exists a
matrix P = P> � O such that the solution to the Lyapunov
matrix equation:

A>11P+PA11 =−Q

is symmetric positive definite (P = P> � O). Let λ1 =
λmin(P) and λ2 = λmax(P). In [22], Zhang et al. mentioned
that an NCS is stable if the maximum allowable transfer in-
terval (MATI) τm is upper bounded by:

τm <
λmin(Q)

16λ2

√
λ2
λ1
‖A‖2

(
1+
√

λ2
λ1

)
∑

p
i=1 i

.

Based on this τm upper bound and treating g(t,x) as a van-
ishing perturbation as in [20], we can introduce a bound to
the perturbation that guarantees the stability of DNCS.

Theorem 2. For the perturbed general state of the system
in (30), if the origin is a globally exponentially stable point
of the non-networked system, and if τm satisfies:

1−||D|| ||A11 +D||−1(e||A11+D||τm −1)> 0,

and the perturbation is upper bounded by

||ex(t)|| ≤ γ||x(t)||,

where

γ =
||A11|| ||A11 +D||−1(e||A11+D||τm −1)e||A11+D||τm

1−||D|| ||A11 +D||−1(e||A11+D||τm −1)
,

then the origin is a globally exponentially stable equilibrium
point of the DNCS.

Proof. The proof of the above theorem is very similar to the
proof of Walsh et al. in [18].

4 Simulation Results
This section is dedicated to discuss our results from sim-

ulating the behavior of the proposed design of the DNCS. We
first discuss two methods that we used to find a bound for the
maximum allowable transfer interval τm. The first method

Fig. 6. The Network Effect Modeled as Pure Time Delay.

considers the network effect as a perturbation as in Theo-
rems 1 and 2. We used the MATI bound for the computation
of the sufficiency condition of stability to the DNCS. This
bound is used for stability analysis in general NCS systems.
From the simulation results, we note that it is very conserva-
tive bound for a sufficiency condition of stability.

In the second method we used a less conservative bound
from the literature. In [19], they derive the MATI bound by
treating the network effect as a pure time delay. Figure 6
shows a high level description for a network modeled as a
time delay.

With this modeling, the plant and controller dynamics
can be rewritten as:

ẋc(t) = Acxc(t)+BcCpxp(t− τsc)

ẋp(t) = Apxp(t)+BpDcCpxp(t− τsc− τca)

+BpCcxc(t− τca).

The main idea behind finding a bound on the maximum al-
lowable transfer interval (MATI) or τm is to model the de-
layed state as a taylor series expansion:

x(t− τ) =
∞

∑
k=0

(−1)n τn

n!
x(n)(t).

In [19], they applied the following approximation:

x(t− τ)≈ x(t)− τẋ(t),

which leads to a significantly less conservative bound on τm
as follows:

τm <
1

‖Bp[WCp ,K]‖
. (32)

4.1 Numerical Example
In this section we introduce three numerical examples to

analyze the behavior of the proposed design of the observer-
based controller and the Luenberger combined observer-
controller for the DNCS. We also discuss the perturbation
bounds that we derived in Theorems 1 and 2.



4.1.1 Example 1 – Observer-Based Decentralized Con-
trol of Mobile Robot

The following system appears in [21]:

A =


0 0 0 0
0 0 0 0
0 0 0 0
2 2 0 0

 ,B1 =


0 1
0 0
1 0.2
0 0.5

 ,

B2 =


0 0
0 1
−1 −2
0 0.5

 ,C1 =

1 0 0 0
0 0 1 0
0 0 0 1

 ,

C2 =

0 1 0 0
0 0 1 0
0 0 0 1

 .
It is an unstable system with two controllers. In the con-

troller design, only the local information are available. Com-
puting the design parameters, we get the following decentral-
ized control laws:

u1 =−
[

0.022 −2.587
0.896 −2.326

]
z1−

[
0.032 0.822 1.801
1.280 0.303 2.557

]
ŷ1,

u2 =−
[
−0.271 0.307
0.106 −1.467

]
z2−

[
−0.543 −0.822 −0.277
1.072 −0.744 1.641

]
ŷ2.

From the simulation results we note that the system becomes
unstable for τm > 0.20065 sec, as shown in Figure 7. When
we compute the bound of MATI using Theorem 2, we get
τm = 1.2580e−7 sec ,which is very conservative to guarantee
the stable behavior of the DNCS as shown in Figure 8. On
the other hand, when we use (32), we get τm = 0.1922 sec,
which is very close to the above bound of stability (τm <
0.20065 sec).

In Theorem 1, the sufficiency condition of stability
is ‖∆Sc‖ ≤ 1

λmax(P)
. From the simulation results, ‖∆Sc‖ =

20.2418 and 1
λmax(P)

= 0.4341. We can see that the system
is stable even with larger value of the norm of the pertur-
bation which means that the perturbation bound of Theo-
rem 1 is conservative as a sufficiency condition for stabil-
ity. In Theorem 2, the sufficiency condition of stability is
γ < 1

2λ2
. From the simulation results, γ = 1.1064e−5 and

1
2λ2

= 0.2171. Unlike the bound of Theorem 1, the perturba-
tion bound of Theorem 2 is satisfied since the MATI bound
in Theorem 2 that we used is very conservative as we men-
tioned before (τm = 1.2580e−7 sec).
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Example 1 - Unstable Output

Fig. 7. Unstable Behavior of the System in Example 1 (for τm >
0.20065 sec).
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Example 1 - Stable Plant Output

Fig. 8. Stable Behavior of the System of Example 1 (conservative
bound, τm = 1.2580e−7 sec).

4.1.2 Example 2 – Observer-Based Decentralized Con-
trol Numerical Example

The following system appears in [7]:

A =


−3 0 −0.6 1.5 −0.30
−0.3 −6 0 0.6 1.5
−1.2 1.5 −9 0.3 −3
−2.25 −0.6 −2.4 2 0
−0.6 1.5 −1.5 1.5 3.75

 ,B1 =


1
0

0.5
1
−1

 ,

B2 =


0.2
−0.1

1
−2
0.3

 ,C1 =

[
1 0.2 −0.3 1 2
1 0 0 0 −0.5

]
,
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Fig. 9. Unstable Behavior of the System in Example 2 (for τm >
0.035324 sec).

C2 =

[
0.5 0 0.1 0.7 0.9
0.6 0.4 −0.4 0.5 0

]
.

It is also an unstable system with two controllers. After
computing the design parameters for the observer-based con-
troller as in [7] (the global state feedback control gain matrix
F is computed using the Continuous Algebraic Riccati Equa-
tion), we get the following decentralized control laws:

u1 =−
[
−1.36 −1.36 5.15

]
z1−

[
−2.81 4.72

]
ŷ1,

u2 =−
[
9.19 9.19 −24.27

]
z2−

[
−0.96 −5.67

]
ŷ2.

From the simulation results we note that the system becomes
unstable for τm > 0.035324 sec, as shown in Figure 9. Com-
puting the bound of MATI by considering the Theorem 2,
we find that τm = 5.2753e−9 sec, which is extremely con-
servative to guarantee the stable behavior of the DNCS as
shown in Figure 9. Nonetheless, when we use (32), we get
τm = 0.0399 sec, which is very close to the above bound of
stability (τm < 0.0353247 sec).

From Theorem 1, the sufficiency condition of sta-
bility is ‖∆Sc‖ ≤ 1

λmax(P)
. From the simulation results,

‖∆Sc‖ = 99.3109 and 1
λmax(P)

= 0.4216. Again, we can see
that the system is stable even with larger value of the norm
of the perturbation which means that the perturbation bound
of Theorem 1 is conservative as a sufficiency condition for
stability.

In Theorem 2, the sufficiency condition of stability is
γ < 1

2λ2
. From the simulation results, γ = 5.1640e−6 and

1
2λ2

= 0.2108. This example also shows that the perturbation
bound of Theorem 2 is satisfied, which is because the fact
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Example 2 - Stable Plant Output

Fig. 10. Stable Behavior of the System in Example 2 (conservative
bound, τm = 5.2753e−9 sec).

that in Theorem 2 the MATI bound that we used is very
conservative as we mentioned before (τm < 5.2753e−9 sec),
and that can be seen in Figure 10.

4.1.3 Example 3 – Luenberger Combined Observer-
Controller Numerical Example

The following system is numerical example that consid-
ers second controller design implementation for the DNCS.
The state-space matrices are given by:

A =

[
1 −2
1 2

]
,B1 =

[
−1 0

]
,B2 =

[
0 1
]
,C1 =

[
1 0
]
,

and C2 =
[
0 1
]
.

The plant is initially unstable with two controllers, while
the non-networked controlled system is stable. After com-
puting the design parameters for the Luenberger controller,
we get the following decentralized control laws (x̂ is the esti-
mated state here, since we’re using the Luenberger observer):

u1 =−
[
−2.62 0.16

]
x̂1, &u2 =−

[
−0.162 4.57

]
x̂2.

From the simulation results, we note that the system be-
comes unstable for τm > 0.1074 sec as shown in the lower
subfigure in Figure 11. Computing the bound of MATI by
applying Theorem 2, we find that τm = 4.1660e−8 sec, which
is a very conservative bound to guarantee the stable behavior
of the DNCS as shown in Figure 11. Nonetheless, when we
use (32), we get τm = 0.2158 sec. From Theorem 1, the suf-
ficiency condition of stability is ‖∆Sc‖ ≤ 1

λmax(P)
. From the
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Fig. 11. Example 3 Stability Analysis.

simulation results, ‖∆Sc‖ = 48.6996 and 1
λmax(P)

= 0.2270.
Again, we can see that the system is stable even with larger
value of the norm of the perturbation which means that the
perturbation bound of Theorem 1 is conservative as a suffi-
ciency condition for stability (same as in the first two exam-
ples).

In Theorem 2, the sufficiency condition of stability is
γ < 1

2λ2
. From the simulation results, γ = 2.3724e−6 and

1
2λ2

= 0.1135. This example also shows that the perturbation
bound of Theorem 2 is satisfied, which is due to the fact that
in Theorem 2 the MATI bound that we used is very conserva-
tive as we mentioned before (τm < 4.1660e−8 sec), and that
can be seen in Figure 11.

5 Conclusions
This paper introduces a general framework that con-

verts a generic decentralized control configuration of non-
networked systems to the general setup of a Networked Con-
trol System. Two design methods from the literature of de-
centralized control for non-networked systems were chosen
as a base for the design of a controller for the networked sys-
tems, the first being an observer-based decentralized control,
while the second is the well-known Luenberger combined
observer-controller design. The main idea of our design is to
formulate the DNCS in the general form and then map the re-
sulting system to the general form of the NCS. The network
effect has been treated as a perturbation. Two methods to
analyze the stability of the DNCS system are introduced and
analyzed for the two control designs. Perturbation bounds

for stability of the DNCS systems have been derived. The
maximum allowable transfer interval (MATI) is computed
based on two different methods in the literature. The simula-
tion results showed that if we used a conservative method to
compute MATI, we get a less conservative results for the per-
turbation bound and vise versa. In the future, the results of
this paper can be used to analyze the effect of the scheduling
protocol on the MATI which is a critical factor in analyzing
the stability of DNCSs.
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