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Abstract

A common metric to measure the robustness of a network is its algebraic connectiv-

ity. This paper introduces the flight routes addition/deletion problem and compares three

different methods to analyze and optimize the algebraic connectivity of air transportation

networks. The Modified Greedy Perturbation Algorithm (MGP) provides a local optimum

in an efficient iterative manner. The Weighted Tabu Search (WTS) is designed for the

flight routes addition/deletion problem to offer a better optimal solution with longer com-

putation time. The relaxed semidefinite programming (SDP) is used to set a performance

upper bound and three corresponding rounding techniques are applied to obtain the feasible

solution. The simulation results present the trade-off among the Modified Greedy Pertur-

bation, Weighted Tabu Search and relaxed SDP, with which we can decide the appropriate

algorithm to adopt for maximizing the algebraic connectivity of an air transportation net-

work under different network sizes. Finally a real air transportation network of Virgin

America is analyzed.

Keywords: Air transportation network, Algebraic connectivity, Optimization

1. Introduction

The air transportation network is made of the nodes that represent airports and the

edges that represent the flight routes which directly link two airports [29, 17, 28]. In an air

transportation network either a node failure or a link failure may happen due to weather
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hazard and other emergencies. How to build a robust or well connected network, which

has the ability to transport passengers between any two airports via one link or through

multiple links under the unpredictable node or link failures, is a practical problem that

has significant economic impact. In this paper we measure and optimize the robustness

of air transportation networks by computing its algebraic connectivity, which is one of

the network metrics from graph theory research. The algebraic connectivity is defined

by Fiedler as the second smallest Laplacian eigenvalue of a graph [12]. Compared to

the betweenness, degree and clustering coefficient that are defined on each node [4], the

algebraic connectivity is selected as the network robustness metric in this work because the

researchers have shown that it has the tightest bound to the network robustness in terms of

node and link connectivities and it is the most computational efficient network robustness

metric [20, 19, 6].

Traditionally, the node connectivity and the edge connectivity are two metrics to evaluate

a graph’s robustness [14]. The node (edge) connectivity of a graph G is the minimum

number of node (edge) deletions sufficient to disconnect G.

In order to show the limitation of node (edge) connectivity metric, two different topolo-

gies are shown, where Figure 1a is a N -node line topology and Figure 1b is a N -node star

topology. The node connectivities for both topology formations are 1 and so are the edge

connectivities. However, the star topology should be more robust than the line topology

because in Figure 1b the network will be disconnected only when the central node fails,

while in Figure 1a any node failure can cause the network disconneted except the two end

nodes. The robustness features of the two topologies are intuitively different. But neither

the node connectivity nor the edge connectivity can observe the difference between these

two topologies.

According to the definition in [12], when N = 4, the algebraic connectivities of Figure 1a

and Figure 1b are 0.586 and 1 respectively, which show that the star topology is more robust

than the line topology.

Researchers from graph theory and networks have proved that the algebraic connectiv-

ity provides better resolution on how well a graph or network is connected and is a fair

measurement of the network robustness [20, 6].
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The air traffic demand is expected to continue its rapid growth in the future. The Fed-

eral Aviation Administration (FAA) estimated that the number of passengers is projected

to increase by an average of 3% every year until 2025 [11], so the expanding load on the

current air transportation network will cause more and more flight delays and cancellations

with the limited airspace and sector capacities. As a result, a robust air transportation

network design scheme is necessary to sustain the increasing traffic demand. This is the

major motivation of this work.

An air transportation network can be represented as a graph G with n nodes and m

edges. With the fact that if a direct flight route exists between airport ai and airport aj,

normally the direct return flight route from aj to ai also exists [18], G is constructed as

an undirected simple graph, where the airports are indexed as {ai|i = 1, 2, . . . , n} and the

link between airports ai and aj is named as eij.

In reality imposing weights on edges is necessary because the weights bring more infor-

mation to an air transportation network. An edge weight may be used to represent the link

strength for random failure, the number of daily flight operations on this edge, the monthly

passenger flow between two airports, etc [23]. In this study we set the edge weight as the

link strength with non-negative integers, which is used to describe how likely a link is going

to fail. A stronger link under random failure is assigned with a bigger edge weight value

while smaller edge weights are assigned to those links that are easy to fail (in practice,

some flights are more often to be cancelled or delayed, and some air space is more likely to

be affected by severe weather).

The aim of this work is to maximize the algebraic connectivity in a weighted air trans-

portation network under several given constraints. Although the maximized algebraic con-

nectivity value might be abstract, the resulted optimal network design is applicable and

beneficial in practice. The methods developed in this work are expected to be implemented

to measure and to enhance the robustness of air transportation networks. With these meth-

ods the network planners from airline companies can maintain or modify the structure of an

existing network and make strategies for the future development of the air transportation

network.

The rest of the paper is organized as follows. The related work from literature is pre-
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sented in Section 2. In Section 3 we formulate the flight routes addition/deletion problem

and show that the weighted problem is NP-hard. In Section 4 the heuristic algorithm from

Ghosh and Boyd for unweighted graph is analyzed and extended to solve the weighted

problem. The tabu search algorithm is designed for the flight routes addition problem in

Section 5. In Section 6 the relaxed semidefinite programming (SDP) method is introduced

and three different rounding techniques are discussed. In Section 7 we evaluate the per-

formances of our algorithms via simulations. A real air transportation network of Virgin

America is investigated in Section 8. Section 9 concludes this paper.

2. Related Work

Air transportation network and its robustness have been studied over the last several

years. Guimera and Amaral [17] first studied the scale-free graphical model of air trans-

portation network. Conway [8] showed that although it was better to describe the national

air transportation system or the commercial air carrier transportation network as a complex

system, the scale-free network model was satisfactory for network simulation. Bonnefoy [5]

showed that the air transportation network was scale-free with aggregating multiple airport

nodes into mega nodes. Alexandrov [2] defined that on-demand transportation networks

would require robustness in system performance (time of service windows, denial of service

rates). The robustness of an on-demand network would depend on tolerance of the net-

work to variability in temporal and spatial dynamics of weather, equipment, facility and

crew positioning, etc. Kotegawa et al. [23] surveyed different metrics for air transporta-

tion network robustness, including betweenness, degree, centrality, connectivity, etc. He

selected clustering coefficient and eigenvector centrality as the network robustness metrics

in his machine learning approach. However, according to Bigdeli et al. [4], the between-

ness, degree and clustering coefficient are all defined on a single node. In order to evaluate

the robustness of the entire network, these metrics need to be calculated on every node,

which may result in a non-efficient computation process. Jamakovic and Uhlig [20], Ja-

makovic and Mieghem [19] found that the algebraic connectivity was a generic metric in

the analysis of various robustness problems in several typical network models. Jamakovic

and Uhlig [20] studied that the algebraic connectivity and the network robustness in terms
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of node and link connectivities on three different complex network models: the random

graph of Erdos-Renyi, the small-world graph of Watts-Strogatz and the scale-free graph

of Barabasi-Albert. They concluded that the algebraic connectivity can be considered as

a fair measure of the robustness in all three complex network models. Jamakovic and

Mieghem [19] showed that the larger the value of the algebraic connectivity, the better the

graph’s robustness to node and link failures. Byrne et al. [6] showed algebraic connectiv-

ity can improve the robustness of the network by reducing the characteristic path length.

They stated that the algebraic connectivity was the efficient network robustness measure

with much less computation time for both small and large size networks. Kim and Mes-

bahi [21] proposed an iterative algorithm for maximizing the algebraic connectivity with

a semidefinite programming solver at each recursive step. Although their algorithm has a

local convergence behavior, simulations suggest that it often leads to a global optimum.

Vargo et al. [28] introduced the algebraic connectivity to air transportation networks for

the first time. They chose the algebraic connectivity as the robustness metric and built the

optimization problem solved by the edge swapping based tabu search algorithm.

In this paper, the flight routes addition/deletion problem is formulated based on the

weighted air transportation network. Greedy heuristic, tabu search and semidefinite pro-

gramming techniques are applied to find the maximal algebraic connectivity and the corre-

sponding optimal network design. By comparing these three methods, we hope to provide

advice to the network planners from the airline companies on how to select the appropriate

method according to the trade-off between algorithm performance and computation time.

3. Problem formulation and its NP-hardness

In real world there are very few chances to create a new air transportation network

either in a local region or for a whole country because the air routes coverage in modern

days is already wide especially in the United States. Instead, to maintain or to improve

the robustness of an existing network, restricted by adding or deleting a few links due to

airline budgets, weather conditions, economic policies, etc., is much more imperative and

necessary.
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3.1. Preliminaries

A graph G is used to represent the air transportation network. The weighted adjacent

matrix A of graph G has the ith row and jth column entry aij. The diagonal items are all

zeros and the off-diagonal item aij (i 6= j) is equal to edge weight wij:

aij =


wij, if node i and node j are connected

by an edge eij with weight wij;

0, if node i and j are not connected.

(1)

where the weights are usually bounded by an upper limit W because a weighting scheme

without an upper bound is normally not applicable in practice.

The weighted Laplacian matrix L is defined based on the adjacent matrix A. Each item

lij of L can be written as:

lij =

 −aij, if i 6= j;∑n
k=1 aik, if i = j.

(2)

The second smallest eigenvalue λ2 of L is the weighted algebraic connectivity, which is the

focus of this paper.

3.2. Problem formulation

G(V,E0) is the graphical description of an existing integral weighted air transportation

network, where the node set V is the collection of all the airports in this network and the

edge set E0 contains the existing links between the airport pairs. The size of set V is n

and the size of E0 is m. The objective is to maximize λ2 with a fixed number k of edge

additions or deletions based on E0 while the edges to be added or deleted are given in a

pre-determined set P (for addition) or Q (for deletion). All the weights of the edges in sets

E0, P , Q are non-negative integral and bounded by W . We denote the routes to be added

or deleted as a set of ∆E. Thus the flight routes addition problem is:

maxλ2(G(V,E0 + ∆E))

s.t. |∆E| = k,

∆E ⊆ P, P ∩ E0 = ∅,

wij ∈ I, wij < W.

(3)
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The flight routes deletion problem is:

maxλ2(G(V,Eo −∆E))

s.t. |∆E| = k,

∆E ⊆ Q,Q ⊆ E0,

wij ∈ I, wij < W.

The flight routes addition problem and the flight routes deletion problem are formulated

as two disjoint problems for different needs. For simplicity of demonstration, we only study

the flight routes addition problem. The algorithms for solving flight routes deletion problem

can be developed similarly.

3.3. Alternative problem formulation

Since λ2(G) is computed based on the weighted Laplacian matrix of G, we can also

denote λ2(G) as λ2(L), in which L is the weighted Laplacian matrix of graph G. According

to Ghosh and Boyd [13], the weighted Laplacian matrix L can be represented by the dot

product summation of edge vectors. For an edge e connecting two nodes i and j, we define

the edge vector he ∈ Rn as he(i) = 1, he(j) = −1, and all other entries 0. we is the

non-negative integral weight on e. Suppose there are m edges in graph G, the weighted

Laplacian matrix L of G is the n× n matrix:

L =
m∑
e=1

weheh
T
e . (4)

which is equivalent to the weighted Laplacian matrix definition in Eq. (2).

Note that λ2(L) is monotone increasing with the edge set: if G1 = (V,E1) and G2 =

(V,E2) are such that E1 ⊆ E2, then λ2(G1) ≤ λ2(G2) [12]. That is, the more connected

graph (on the same vertex set) has the greater algebraic connectivity.

According to the edge vector description of L in Eq. (4) and omitting the “constraints”

on given weights wij, the flight routes addition problem (3) can be written as:

maxλ2(L0 +
∑|P |

e=1 xeweheh
T
e )

s.t. 1Tx = k,

x ∈ {0, 1}|P |.

(5)
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where L0 is the weighted Laplacian matrix of the existing networkG(V,E0). A fixed number

of k edges are to be added. P is the pre-determined set with size |P | which contains the

candidate edges to be added. e is the index for candidate edges in P . xe is a boolean

variable, in which 1 means that edge e from P is selected into ∆E in (3) and 0 means that

e is not selected into ∆E. x is a vector consisting of all xe’s whose length is |P |, illustrating

which candidate edges are to be added and which are not. We observe that λ2(L) is a

function of x, which can be denoted as λ2(L(x)).

3.4. NP-hardness

Theorem 1. The non-negative integral weighted flight routes addition problem is NP-hard.

Proof 1. The proof is a process of two steps reduction.

Step 1: As we defined in the problem, the weights are non-negative integral and bounded

by W . Let’s set W as 2, now all the weights can only be 0 or 1. The problem becomes a

regular unweighted problem.

Step 2: Another reduction happens in set P . Based on the same node set V , we construct

a complete graph Gc and denote the edges of the complete graph as set Ec. Now if we reduce

P to all the other edges which do not exist in E0, i.e. the set (Ec − E0), our problem is

transformed to the maximum algebraic connectivity augmentation problem [25], which is

proved to be NP-hard.

Since the flight routes addition problem can be reduced into a proved NP-hard problem,

it is also NP-hard. �

As a result, we seek heuristic algorithms to solve the flight routes addition problem

instead of deriving the closed-form optimal solution.

4. Modified Greedy Perturbation

The second smallest eigenvalue λ2(L) is called the algebraic connectivity, and the cor-

responding normalized eigenvector is called the Fiedler vector [12]. Ghosh and Boyd [13]

present a greedy local heuristic, they add the k edges one at a time based on the calculation

of the Fiedler vector. In this section we extend their heuristic into the Modified Greedy

Perturbation Algorithm (MGP) for the weighted problem.
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4.1. The bond between λ2 and L

According to Mohar [24], no matter L is weighted or not, the algebraic connectivity can

be computed by:

λ2(L(x)) = min {y
TL(x)y

yTy
| y 6= 0,1Ty = 0}, (6)

where y is a n× 1 non-zero vector and it is orthogonal with all-one vector 1.

Furthermore, Eq. (6) can be transformed into:

λ2(L(x)) = min {y
TL(x)y

‖y‖2
| y 6= 0,1Ty = 0}, (7)

in which we substitute vector y with normalized vector v = y/‖y‖ and we have Eq. (8):

λ2(L(x)) = min {vTL(x)v | ‖v‖ = 1,1Tv = 0}, (8)

When the normalized vector v in Eq. (8) is also a Fiedler vector, since

λ2(L(x))v = L(x)v, (9)

we multiply vT to the left of the both sides of Eq. (9):

vTλ2(L(x))v = vTL(x)v. (10)

Because vector v is normalized,

vTλ2(L(x))v = λ2(L(x))(vTv) = λ2(L(x)) = vTL(x)v. (11)

Therefore if v is a Fiedler vector, the minimum in Eq. (8) can be achieved.

λ2(L(x)) = vTL(x)v, (12)

Eq. (12) shows that the Fiedler vector v is the bond between the algebraic connectivity

λ2 and the Laplacian matrix L, both in unweighted and weighted cases.

4.2. Maximize λ2(L(x)) in the weighted problem

Based on Formulation (5), the weighted Laplacian matrix after flight routes addition is:

L(x) = L0 +

|P |∑
l=1

xeweheh
T
e (13)
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The partial derivative of λ2(L) with respect to xe gives the first order approximation of

the increase for λ2(L), if the edge e is added to graph G. According to Eq. (12),

∂

∂xe
λ2(L(x)) = vT

∂L(x)

∂xe
v. (14)

Plug Eq. (13) into Eq. (14). Since the Laplacian L0 before flight routes addition is not

a function of xe, we obtain:

∂

∂xe
λ2(L(x))

= vT
∂L(x)

∂xe
v

= vT
∂(L0 +

∑|P |
l=1 xeweheh

T
e )

∂xe
v

= vT (weheh
T
e )v = we(v

The)(h
T
e v)

= we(vi − vj)2. (15)

Thus the unweighted approach is extended into the Modified Greedy Perturbation Al-

gorithm, which picks one edge from remaining candidates with maximal we(vi − vj)
2 at

each iteration, where vi and vj are the ith and jth items of the Fiedler vector v of the

current Laplacian L. The complete algorithm is listed in Algorithm 1.

Algorithm 1 Modified Greedy Perturbation

1: given graph G(V,E0), candidate edge set P and all the edge weights in E0 and P

2: let E = E0

3: for 1 to k do

4: calculate λ2(G(V,E)) and its Fiedler vector v

5: eij = arg maxeij∈P wij(vi − vj)2

6: E = E + eij

7: P = P − eij
8: end for

9: output G(V,E)

The computation complexity of Algorithm 1 heavily depends how fast we can compute

the second smallest eigenvalue of the Laplacian matrix L. Line 4 takes polynomial O(nω)
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arithmetic operations if the square matrix multiplication algorithm [9] is applied, where

ω = 2.376. Line 5 takes |P | operations. Line 6 and Line 7 both only need 1 operation.

Thus the total complexity is k ·O(nω + |P |+ 2) = O(knω + k|P |). Because the researchers

believe that 2 < ω < 2.376, surveyed by Cohn et al. [7], Demmel et al. [10] and |P | is

usually smaller than n2, we have total complexity O(knω), which is polynomial.

5. Weighted Tabu Search

Besides a greedy search like the MGP, which usually results in a local optimum, a global

optimum search can perform better in solving the maximum. Given the graph G(V,E0),

we are interested in finding k edges from set P to add to G, which together maximally

improve λ2(G(V,E0)) to λ2(G(V,E0 + ∆E)). The global exhaustive search gives out
(|P |

k

)
different λ2 and the biggest λ2 is the final solution. Generally the number

(|P |
k

)
is so large

that the computation time of the exhaustive search is extremely long.

5.1. Tabu search introduction

As an alternative of the exhaustive search, tabu search [15, 16] improves the efficiency

of the search process by keeping track of the searching trajectory and operating flexible

evaluation criteria. An appropriate implementation of memory is the key feature of tabu

search. While most searching algorithms keep in memory essentially the best solution

value visited so far, tabu search additionally records the searching trajectories to the recent

found solutions. The recorded searching trajectories are designed to prevent the reversal or

repetitive moves by defining some forbidden moves (tabu). The idea of the tabu search is

to permit the method to go beyond local optimum while still running into a better solution

value at each step. The tabu restriction can not be violated except when the searching

meets aspiration criteria [15]. Tabus are sometimes too powerful and they may prohibit

attractive moves, even when there is no danger of cycling. It is thus necessary to have

aspiration criteria that will allow one to revoke tabus.

5.2. The first attempt in air transportation network connectivity with tabu search

To the best of our knowledge, the research in Kincaid et al. [22], Vargo et al. [28] is the

first work that introduces algebraic connectivity into air transportation networks. They
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implemented tabu search to solve their optimization problem, in which they link algebraic

connectivity with the network synchronization. The synchronization is the dynamical be-

havior of a network that determines the transmission delays between each pair of nodes [3].

Their analysis of algebraic connectivity is performed on the unweighted Laplacian matrix.

Although they also pursue the maximum of λ2(G), their problem is to design an air

transportation network which requires preserving the related graph’s degree distribution

and keeping the graph connected. Since the problem is different, in this section we design

our own tabu search algorithm as the Weighted Tabu Search (WTS) to solve the flight

routes addition problem.

5.3. Weighted Tabu Search for Flight Routes Addition Problem

Now we elaborate the details of the WTS implemented in this work. The search is an

iterative process and the solution s′ of the next iteration is generated from the neighbor of

the current solution s supervised by a dynamically updating tabu list T .

5.3.1. Neighbor

The WTS looks for the next iteration solution s′ inside the neighbor N(s) of the current

solution s. After s′ is chosen, the following iteration solution will be selected from its

neighbor N(s′).

Instead of the swapping operation in Vargo et al. [28], we define N(s) for our problem.

An initial solution s contains k edges to be added. The pth (1 ≤ p ≤ k) edge eij in solution

s connects two nodes vi and vj, which is shown in Figure 2. All the edges incident to vi

or vj and in set P constitute the sub-neighbor N(s, p) of solution s at the pth edge. The

edges which already exist in G or are not in candidate set P are not displayed in Figure 2.

To prevent N(s, p) from being empty, a random jump inside P is also included in N(s, p),

which jumps to any edge in P but not current edges 1 to k in solution s. If the random

jump gives out an existing edge in N(s, p), then we execute another random jump. The

neighbor of current solution s is N(s), which is the union of the sub-neighbors of every

edge in s:

N(s) =
k⋃

p=1

N(s, p).
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Notice that the k new edges will be selected from their own sub-neighbor N(s, p) and

form s′ together.

5.3.2. Tabu list

The tabu list T records the most recent |T | moves. For each edge p (1 ≤ p ≤ k) in

the current solution s, all the candidate movings from edge p to its neighbor N(s, p) are

checked with the tabu list. If a candidate moving repeats one of the moves in T , this

candidate will not be selected.

5.3.3. Aspiration criteria

The simplest and most commonly used aspiration criterion allows a tabu move when

it results in a solution with an objective value better than that of the current best-known

solution. When a searching move in the WTS method finds the solution with a better

λ2 value than the best observed value, this move will be performed. Therefore the best

observed value λ∗2 needs to be recorded throughout the searching process.

The tabus will not be violated oftenly because during the tabu search process, it is quite

rare that the better λ2’s are found by reverse or repetitive moves.

5.3.4. The complete Weighted Tabu Search algorithm

The complete Weighted Tabu Search (WTS) is shown in Algorithm 2. Line 2 sets an

initial solution s0. Line 3 initializes the parameters, where s is the solution in the current

iteration, λ∗2 and s∗ record the best λ2 and its corresponding s respectively. Line 4 shows

that the algorithm terminates after Φ iterations. Line 5 to 7 constructs the sub-neighbors

of the current solution. Line 9 forms s′ from N(s). Line 10 to 13 checks the aspiration

criteria. Line 14 to 16 checks whether the move from s to s′ is in the tabu list T .

6. Relaxed Semidefinite Programming

In this section we study relaxed semidefinite programming (SDP) formulation of the

flight routes addition problem (5). The relaxed SDP solution provides an upper bound

for our heuristic algorithms. Furthermore, the relaxed SDP solution can also be used to

generate feasible solution by three different rounding techniques, which will be compared

in terms of performance and computation time.
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Algorithm 2 Weighted Tabu Search

1: given G(V,E0), P and the edge weights in E0

2: random pick k edges from P to construct s0

3: s = s0, λ
∗
2 = 0, s∗ = s0, T is set to a empty queue with the pre-fixed size |T |

4: for iteration = 1 to Φ do

5: for p = 1 to k do

6: construct N(s, p) of the pth edge in s

7: end for

8: while 1 do

9: pick one edge p′ from each N(s, p) to construct s′

10: if λ2(s
′) > λ∗2 then

11: s = s′, update T

12: λ∗2 = λ2(s), s
∗ = s

13: end if

14: if s′ is not in T then

15: s = s′, update T

16: end if

17: end while

18: end for

19: output λ∗2 and s∗
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6.1. Relaxed SDP Formulation

Relaxing the non-linear binary programming (5) by changing the boolean constraint to

the linear constraint, we obtain the following relaxation:

maxλ2(L0 +
∑|P |

e=1 xeweheh
T
e )

s.t. 1Tx = k,

0 ≤ x ≤ 1.

(16)

where x is a vector of length |P |. With a relaxed domain, the optimal solution of this linear

relaxation gives an upper bound for the solution in (5).

The linear relaxation in (16) can be converted into a semidefinite programming format

by letting e0 = 1√
n

∑n
i=1 ei, where ei’s are vectors of the standard basis. Then (16) is

formulated as:

max θ

s.t. L0 +
∑|P |

e=1 xeweheh
T
e � θ(In − e0e′0)

1Tx = k,

0 ≤ x ≤ 1.

(17)

The relaxed SDP formulation (17) is equivalent to (16), which is explicitly shown by Na-

garajan et al. [26]. In this paper SeDuMi [27] is used to solve (17), and the solution serves

as an upper bound for the heuristic algorithms. The rounding techniques are then used to

create feasible solution based on the relaxed optimal solution.

6.2. Rounding Techniques

Suppose we have found the relaxed optimal solution x∗. We want to select k edges from

x∗ to form our rounded solution x̂ in which x̂i = 1 for k values and x̂i = 0 for the other

|P | − k. Here we present the methods that have been studied and implemented in this

paper.

Greedy: We choose the k biggest elements from the relaxed optimal solution x∗.

Random: We first normalize x∗ and treat it as the probability distribution function.

Then k elements are randomly selected according to the distribution.
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Step by step: We select the biggest element from x∗ and update the Laplacian by adding

this edge in the SDP formulation. Then we solve the SDP again and repeat these two steps

for k times. When k is big, this rounding method needs to solve SDP for k times, which

can take a long time. In that case, the “Log step by step” technique is adopted. At each

step, we choose the best half of the remaining elements. Thus there are only log(k) SDPs

that have to be solved.

6.3. Numerical results

We generate a connected scale-free network with 20 nodes (the simulation setting details

can be found at the beginning of next section). Now k edges are going to be added onto

the generated network. The results are presented in Figure 3. Figure 3a is λ2 as a function

of k, while Figure 3b is the computation time t with k varying. The upper bound obtained

by the SDP relaxation is plotted as well as the curves of three rounding techniques.

Each of the rounding methods presented has some advantages and drawbacks. The one

that gives the best performance is the step by step method. However, since it needs to solve

the relaxed SDP for k times, it is the slowest. At the same time, the greedy rounding is

fast and it provides a performance close to step by step method. We take both the greedy

and step by step rounding techniques in next section to compare with the MGP and WTS.

7. Simulation

We use simulations to compare the performances and computation times of the MGP,

WTS and relaxed SDP with greedy and step by step rounding methods for the flight routes

addition problem. By default n = 20 nodes are generated randomly as a scale-free network

in a 2D plane. The 20 nodes network is applied in our experiments because the relaxed

SDP with step by step rounding takes extremely long computation time when n > 20 and

we want to compare all the methods together in this section. The generated network is

denoted as G(V,E0). The existing edges in E0 and the edges in candidate edge set P are

assigned with weights {wij|wij = 1, 2 or 3}. The number of edges k to be added is set as

input. The total iterations Φ in WTS are set to be 1000.
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7.1. Single link addition experiment

An unweighted network with n = 4 is studied to show that the best link to be added is

determined by the existing network topology. Then a weighted network of the same size is

analyzed to show that the best link to be added also depends on the weighting scheme.

There are only two kinds of minimum spanning tree topologies for four nodes. We call

them topology α and topology β, which are illustrated in Figure 4a and 4b. They are used

as the existing network topologies in our experiment.

The candidate links to be added to the existing topology α are e13, e13 and e24. The

candidate links for the existing topology β are e23, e24 and e34. We denote the algebraic

connectivity of the existing topology is λ02, the increased algebraic connectivity after adding

one link is λ′2 and ∆λ2 = λ′2 − λ02. Table 1 and 2 list that when a single link is added to

the existing topology, how much the λ2 increases. The λ02 for the unweighted topology α is

0.5858 and the λ02 for the unweighted topology β is 1.

Table 1 and 2 show that the link additions and the algebraic connectivity increase

are not trivially related [20]. The best link to be added depends on the existing network

topology. Since topology β is already a robust topology, a single link addition does not

increase the algebraic connectivity. On the other hand, topology α is vulnerable. So any

of the three candiate links brings more robustness, especially when e14 turns the whole line

topology into a circle topology.

To perform the analysis on the weighted networks, link weights 1, 2 and 3 are assigned

to the existing networks. In topology α, we assign w12 = 1, w23 = 2 and w34 = 3. Thus the

algebraic connectivity for the existing network is 0.9358. In topology β, we assign w12 = 1,

w13 = 2 and w14 = 3. The algebraic connectivity for the existing network with topology

β is 1.1944. Table 3 and 4 demonstrate how much a weighted link addition can increase

algebraic connectivity.

Table 3 and 4 demonstrate that the link to be added is also related to the weighting

scheme. The algebraic connectivity is monotone respect to the link weights. Furthermore,

Table 4 shows that the link weights introduce more structural information to the existed

network topology β. In the unweighted network of topology β, the effects of adding e23, e24

and e34 used to be the same. However, to add e34 to the weighted network is apparently a
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worse option than the other two links.

7.2. The impact of k

k is the number of routes added to graph G(V,E0) by four different approaches. This

simulation in Figure 5 is performed based on the default settings with k varying. In

Figure 5a we observe that when more routes are added to the network G, the algebraic

connectivity increases monotonically. The WTS offers the best λ2 enhancement. And

the MGP and relaxed SDP with step by step rounding have the runner-up performance.

When we are looking for a better performance instead of shorter computation time, the

WTS should be considered. The MGP is the fastest method and it gives almost the same

performance as the second best step by step rounding method. Therefore, when we prefer

speed more than performance, the MGP should be choosen.

In detail, Table 5, 6 and 7 are listed to observe the performance to computation time

trade-off among the algorithms when k = 4, 8 and 10. The trade-off function values

of ηλ2 + (1 − η)(−t) are given in these tables to help the network planner analyze the

difference among algorithms and decide which method to use. The factor η is selected as

0.1, 0.3, 0.5, 0.7 or 0.9 from the range [0, 1]. Note when η is small (η = 0.1 to 0.7), the trade-

off function value of MGP is always larger than the values of the other thee methods, which

means that the network planner should choose the MGP to obtain a shorter computation

time. When η is large (η = 0.9), the WTS and SDP with step by step rounding should be

chosen to achieve a higher λ2.

In summary, the trade-off is that when the number k increases, the WTS always finds

a better solution than the others do. However, the MGP can find a satisfactory solution

within such a short time. The long computation time of step by step rounding is un-

acceptable when the network size is huge and the greedy rounding always has the worst

performance. According to the simulations, if the problem is about a small network with

fewer airports, the WTS should be selected for maximizing the network robustness; if it

is a large network, the MGP should be adopted to provide an efficient computation speed

with an acceptable robustness enhancement.

The following two sets of simulations both focus on the parameter settings of the WTS.
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7.3. The impact of tabu list size |T |

Only WTS is studied in this simulation. We maintain the default network size n = 20

and set k = 10. During the simulation we hold the same initial positions of the k routes to

be added. x-axis is used to represent different tabu list lengths |T | as 5, 10, 15, 20, 25, 30.

Figure 6a shows that with the longer |T |, the WTS finds the better λ2. The reason is that

the longer tabu list contains more information which helps the algorithm search more other

neighbors and get out of the local optimum. However, a longer tabu list leads to slower

computation, which is shown in Figure 6b.

7.4. The impact of different initial positions

In this simulation we study the initial positions of WTS. The initial positions are the

initial k routes that are randomly selected from candidate set P and added onto the existing

network G(V,E0). The parameter settings are n = 20, k = 10, |T | = 40. Figure 7 illustrates

that the WTS is not very sensitive to the initial selected k routes. The x-axis is the index of

different initial positions. Six different initial positions of k added routes produce slightly

different λ2 and their convergence times also vary little.

8. Case Study

In this section, a real air transportation network of Virgin America is studied. The

first experiment shows that the weighted algebraic connectivity is a fair measurement for

the weighted network robustness under the current Virgin America network topology. The

second simulation with real flight info provides the advice that the top 5 and top 10 routes

should be added to the current Virgin America network to improve its robustness.

8.1. The current air transportation network of Virgin America

According to the current route map of Virgin America in Figure 8, we consider the

16 airports in the United States and obtain the adjacency matrix as Table 8. The 16 US

airports Boston, NYC/JFK, Philadelphia, DC/IAD, DC/DCA, Chicago/ORD, Orlando,

Fort Lauderdale, Dallas Fort Worth, Seattle, Portland, San Francisco, Los Angeles, Las

Vegas, San Diego and Palm Springs are indexed as numbers 1 to 16. The San Francisco

International Airport (SFO) and the Los Angeles International Airport (LAX) are two
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major hubs of the entire network. They have at least one direct flight to almost all the

other airports.

8.2. Weighted algebraic connectivity and weighted network robustness

In order to study how well the weighted algebraic connectivity can measure the ro-

bustness of a weighted air transportation network, we create five different weighted air

transportation networks with the same topology in Table 8 by randomly assigning one of

the three types of weights to each route. The three types of link weights are mapped to

different link failure probability (Table 9).

For each one of the five weighted networks, 1000 trials are performed. The number of

the network failures is counted in 1000 random trials. The results are shown in Table 10

with λ2 sorted in ascending order.

We can see that with a higher weighted algebraic connectivity, the network is more

robust and has fewer failure cases. With a lower weighted algebraic connectivity, the

network is easier to break down. In summary, the weighted algebraic connectivity is a fair

robustness metric for the weighted air transportation network.

8.3. The top 5 and top 10 routes to be added to the Virgin America network

The current air transportation network is weighted based on the historical flight in-

formation obtained from September 15, 2012 to November 15, 2012. If there is only one

flight between an origin-destination pair (O-D pair), the link weight of this O-D pair will

be assigned based on Table 11. The percentage of canceled flights are from 0% to 5% in the

historical data. We assign weight 3 to the links with cancellation rate in [0, 2%) , weight 2

to the links with cancellation rate in [2%, 4%) and weight 1 to the links with cancellation

rate [4%,∞). If there are more than one flight on a O-D pair, the probability that all

the flights are canceled will be calculated by the joint probability of all the flights on this

route and the corresponding link weight will be assigned based on this joint probability by

looking up Table 11.

The cancellation rates of the candidate routes to be added can be estimated from the

historical route information data published by the FAA. Then the link weights of the

candidate routes are obtained through these estimated cancellation rates. Here we assume
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that all the candidate routes to be added have the medium link strength with weight 2 and

we perform the MGP and WTS methods to find the top 5 and top 10 routes to added to the

current Virgin America network. The results have been shown in Table 12 and Table 13.

9. Conclusion

We formulate the flight routes addition/deletion problem to study the air transportation

network robustness. Three methods are presented to maximize the algebraic connectivity

of the weighted air transportation network in the flight routes addition problem. The

Modified Greedy Perturbation Algorithm is a greedy heuristic derived to compute the

maximal λ2. The Weighted Tabu Search is developed to find the global optimum with

longer computation time. Furthermore, the relaxed SDP with three rounding methods is

adopted to solve the same problem, providing the performance upper bound as well as the

feasible solutions.

The contributions of the paper to the literature are (a) formulating the flight routes

addition/deletion problem, with which the network planners can maintain or modify the

existing network and make strategies for the future development of the air transportation

network; (b) comparing the MGP, WTS and the relaxed SDP with two different rounding

methods to maximize the algebraic connectivity in a simulated scale-free network and a

real air transportation network. The suggestions are provided to the network planners on

how to select the appropriate algorithm.

Our future work is to evaluate the performances of the three methods and analyze their

trade-offs in a large-scale real air transportation network. The top k flight routes to be

added to the large-scale network will be determined to maximally increase the network

robustness.
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Table 1: Single link addition analysis for the 4-node unweighted network with topology α.

link λ′2 ∆λ2/λ
0
2(%)

e13 1 70.71%

e14 2 241.41%

e24 1 70.71%
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Table 2: Single link addition analysis for the 4-node unweighted network with topology β.

link λ′2 ∆λ2/λ
0
2(%)

e23 1 0%

e24 1 0%

e34 1 0%
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Table 3: Single link addition analysis for the 4-node weighted network with topology α.

link λ′2 ∆λ2/λ
0
2(%)

e13 with w13 = 1 2 113.72%

e13 with w13 = 2 2.5359 170.99%

e13 with w13 = 3 2.7376 192.54%

e14 with w14 = 1 2.4746 164.44%

e14 with w14 = 2 3.1716 238.92%

e14 with w14 = 3 3.2313 245.30%

e24 with w24 = 1 1.1078 18.38%

e24 with w24 = 2 1.1716 25.20%

e24 with w24 = 3 1.2038 28.64%

26



Table 4: Single link addition analysis for the 4-node weighted network with topology β.

link λ′2 ∆λ2/λ
0
2(%)

e23 with w23 = 1 2 67.45%

e23 with w23 = 2 2.0905 75.03%

e23 with w23 = 3 2.1155 77.12%

e24 with w24 = 1 1.8105 51.58%

e24 with w24 = 2 1.9088 59.81%

e24 with w24 = 3 1.9407 62.48%

e34 with w34 = 1 1.2014 0.59%

e34 with w34 = 2 1.2030 0.72%

e34 with w34 = 3 1.2038 0.79%
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Table 5: Trade-off analysis between performance and computation time for k = 4.

Methods η = 0.1 η = 0.3 η = 0.5 η = 0.7 η = 0.9

Greedy 0.1481 0.8459 1.5438 2.2416 2.9395

Step by step −0.2720 0.4964 1.2648 2.0332 2.8016

MGP 0.3293 0.9905 1.6517 2.3130 2.9742

WTS −0.0552 0.7234 1.5019 2.2805 3.0590
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Table 6: Trade-off analysis between performance and computation time for k = 8.

Methods η = 0.1 η = 0.3 η = 0.5 η = 0.7 η = 0.9

Greedy 0.3201 1.2615 2.2028 3.1441 4.0855

Step by step −0.5838 0.6308 1.8455 3.0601 4.2748

MGP 0.4877 1.4679 2.4480 3.4282 4.4084

WTS −0.2537 0.9587 2.1711 3.3835 4.5960
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Table 7: Trade-off analysis between performance and computation time for k = 12.

Methods η = 0.1 η = 0.3 η = 0.5 η = 0.7 η = 0.9

Greedy 0.4673 1.6676 2.8680 4.0683 5.2686

Step by step −0.9350 0.7639 2.4627 4.1616 5.8605

MGP 0.6385 1.9225 3.2064 4.4903 5.7743

WTS −0.4738 1.0793 2.6323 4.1854 5.7384
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Table 8: The adjacency matrix consists of 16 Virgin America Airlines airports in the US.

Airport

Index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Boston 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

NYC/JFK 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

Philadelphia 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

DC/IAD 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

DC/DCA 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Chicago/ORD 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Orlando 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Fort Lauderdale 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Dallas Fort Worth 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Seattle 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Portland 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

San Francisco 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

Los Angeles 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0

Las Vegas 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

San Diego 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Palm Springs 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
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Table 9: The mapping between link weights and their link failure probabilities.

link weight wij 1 2 3

link failure probability 5% 3% 1%
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Table 10: The network failure probability is related to the weighted algebraic connectivity

λ2.

weighted λ2 1.0306 1.7586 1.8661 1.9711 2.3128 2.7393

failures in 10000 trials 1113 991 763 571 423 355
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Table 11: The mapping between link weights and the percentage of flight cancellation rate.

link weight wij 1 2 3

link failure probability [4%,∞) [2%, 4%) [0, 2%)
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Table 12: Top 5 routes to be added to the Virgin America route map.

MGP WTS

Boston-San Diego Los Angeles-Palm Springs

Philadelphia-DCA Los Angeles-Las Vegas

DCA-San Diego NYC/JFK-DCA

DCA-Palm Springs DCA-Los Angeles

Las Vegas-Palm Springs Los Angeles-San Diego
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Table 13: Top 10 routes to be added to the Virgin America route map.

MGP WTS

Boston-Las Vegas Los Angeles-San Diego

Boston-San Diego DCA-Las Vegas

Philadelphia-DCA DCA-Los Angeles

IAD-DCA Philadelphia-DCA

DCA-San Diego San Diego-Palm Springs

DCA-Palm Springs Orlando-Palm Springs

Orlando-Palm Springs Seattle-Las Vegas

Fort Worth-Palm Springs DCA-Palm Springs

Seattle-San Diego Fort Worth-Palm Springs

Las Vegas-Palm Springs Boston-DCA
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(a) (b)

Figure 1: N -node line topology and star topology.
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Figure 2: The neighbor of the pth edge eij in current solution s.
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Figure 3: The performance and computation time for three rounding techniques of the

relaxed SDP.
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(a) (b)

Figure 4: The two minimum spanning tree topologies for four nodes.
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Figure 5: Impact of k.
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Figure 8: An air transportation network route map for Virgin America Airlines.
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