ECE301

HW 2
Due on Tuesday Sep. 27th

Please provide steps to explain your answer
T.A.: Jing Guo
email: guo349@purdue.edu
Office Hour change: MSEE180
(9:30am - 10:30am Monday and Wednesday)

Question 1

a.) Consider the continuous-time systems with input $\mathrm{x}(\mathrm{t})$ and output $\mathrm{y}(\mathrm{t})$
1.) $y=x(t)-x(t+1)$
2.) $y(t)= \begin{cases}t & |x(t)| \leq 1 \\ 0 & |x(t)|>1\end{cases}$

For each of the above systems, is it causal? Justify your answer.
b.) Consider the continuous-time systems with input $\mathrm{x}(\mathrm{t})$ and output $\mathrm{y}(\mathrm{t})$
1.) $y(t)=\sin (3 t) x(t)$
2.) $y(t)= \begin{cases}t & |x(t)| \leq 1 \\ 0 & |x(t)|>1\end{cases}$

For each of the above systems, is it time-invariant or time-variant? Justify your answer.
c.) Consider the continuous-time systems with input $\mathrm{x}(\mathrm{t})$ and output $\mathrm{y}(\mathrm{t})$
1.) $y(t)=(x(t-1))^{2}$
2.) $y(t)=O(x(t))$, where $\mathrm{O}($.$) is odd function$

For each of the above systems, is it linear? Justify your answer.
d.) Consider the continuous-time systems with input $x(t)$ and output $y(t)$
1.) $y[n]=x[n-1]+x[n-2]$

Is this system stable? Justify your answer.

Question 2

Consider the discrete-time system with input $\mathrm{x}[\mathrm{n}]$, impulse response $\mathrm{h}[\mathrm{n}]$, and output $y[n]$. Find $y[n]$ by using the formula below

$$
y[n]=x[n] * h[n]
$$

a.) $x[n]=\left(\frac{1}{3}\right)^{n+3} u[n+3] ; \quad h[n]=u[n-3]$
b.) $x[n]=\left(\frac{1}{3}\right)^{n} u[n] * \delta[n-2] ; \quad h[n]=\left(\frac{1}{3}\right)^{n} u[n] * \delta[n+2]$
c.) $x[n]=u[n]-u[n-3] ; \quad h[n]=e^{j \pi n}(u[n]-u[n-3])$

Question 3

Consider the continuous-time system with input $\mathrm{x}(\mathrm{t})$, impulse response $\mathrm{h}(\mathrm{t})$, and output $y(t)$. Find $y(t)$ by using the formula below

$$
y(t)=x(t) * h(t)
$$

a.) $x(t)=e^{-\alpha t} u(t)$;
$h(t)=e^{-\beta t} u(t)$
b.) $x(t)=u(t)-2 u(t-3)+u(t-6)$;
$h(t)=e^{2 t} u(1-t)$
c.) $x(t)=u(t)$;
$h(t)=\delta(t-3)$

Question 4

I: Consider the continuous-time system with input $\mathrm{x}(\mathrm{t})$, impulse response $\mathrm{h}(\mathrm{t})$

$$
h(t)=\delta(t-2)+\delta(2-t) ; \quad x(t)=u(t)
$$

a.) Define the expression $y(t)$
b.) Is this system memoryless? Justify your answer
c.) Is this system time-variant or time-invariant? Justify your answer
d.) Is this system linear? Justify your answer

II: Prove the followings
a.) $x(t) *\left[h_{1}(t)+h_{2}(t)\right]=x(t) * h_{1}(t)+x(t) * h_{2}(t)$
b.) $\left[x_{1}(t) * x_{2}(t)\right] * x_{3}(t)=x_{1}(t) *\left[x_{2}(t) * x_{3}(t)\right]$

Question 5

a.) Define unit step response of an LTI system (discrete-time)
b.) Express h[n] by using unit step response
c.) Determine $\mathrm{h}(\mathrm{t})$ of an LTI system with unit step response

$$
s(t)=\left(e^{-3 t}-2 e^{-2 t}+1\right) u(t)
$$

d.) Linear constant-coefficient differential equations

$$
y^{\prime}(t)+4 y(t)=x(t), \quad x(t)=e^{(-1+2 j) t} u(t), \quad y(0)=1
$$

what is $\mathrm{y}(\mathrm{t})$.
Note: Due to the time limit in class for Olympic II, I made part (c) in this section very easy. For review purpose on exam, i.e., I would find some problems such that first find the $h(t)$ by using the unit step response, then use calculated $h(t)$ and given $x(t)$ (input) to find $y(t)$ (output). Discrete time is also fair game.

