ECE301

HW 4

Due on Tuesday Nov. 1st

Please provide steps to explain your answer
T.A.: Jing Guo
email: guo349@purdue.edu
Office Hour change: MSEE180
(9:30am - 10:30am Monday and Wednesday)

Question 1

Given the discrete-time signal $\mathrm{x}[\mathrm{n}]$ is periodic with period 4. If its Fourier series coefficients $\left\{a_{k}\right\}$ are given as below,

$$
a_{0}=1, a_{1}=\frac{1}{4}+j \frac{3}{4}, a_{2}=\frac{1}{2}, a_{3}=\frac{1}{4}-\frac{3}{4} j
$$

Find the signal $\mathrm{x}[\mathrm{n}]$.

Question 2

Consider an LTI system whose response to the input

$$
x(t)=e^{-t} u(t)
$$

is

$$
y(t)=\left[2 e^{-t}-2 e^{-4 t}\right] u(t) .
$$

(a). Find the frequency response of this system, $H(j w)=\frac{Y(j w)}{X(j w)}$
(b). Determine the system's impulse response.
(c). Determine whether the system is stable, Justify your answer.

Question 3

(a). Determine the frequency response $H\left(e^{j w}\right)$ of the signal

$$
h[n]=a^{n}(u[n]-u[n-10])
$$

(b). Consider the signal

$$
s[n]=a^{n} \sin \left(\frac{\pi n}{5}\right)(u[n]-u[n-10])
$$

express $S\left(e^{j w}\right)$, the Fourier transform of $s[n]$, in terms of $H\left(e^{j w}\right)$, the frequency response of $\mathrm{h}[\mathrm{n}]$ above.

Question 4

When $x(t)=e^{-2 t} u(t)$ is the input to an LTI system with frequency response, $H(j w)=\frac{Y(j w)}{X(j w)}$

$$
H(j w)=\frac{5}{3+j w}
$$

then the output is $\mathrm{y}(\mathrm{t})$.
(a). Find $X(j w)$.
(b). Find $Y(j w)$, then use $Y(j w)$ to find $y(t)$,

Question 5

Given a frequency response $H\left(e^{j w}\right)$, where $w \in(-\pi, \pi)$,

$$
H\left(e^{j w}\right)=\frac{1+e^{-2 j w}}{1+\frac{9}{16} e^{-2 j w}}
$$

Determine the overall output $y[n]$, when the input is:

$$
x[n]=3+2 \cos \left(\frac{\pi}{2} n\right)+\cos (\pi n)
$$

