## ECE301

## HW 5

Due on Thursday Nov. 17th

Please provide steps to explain your answer
T.A.: Jing Guo
email: guo349@purdue.edu
Office Hour change: MSEE180
(9:30am - 10:30am Monday and Wednesday)

## Question 1

a.) Define that the fix notation $X_{1}(j w)$ and $X_{2}(j w)$ are Fourier transform of $x_{1}(t)$ and $x_{2}(t)$ respectively.
Prove Fourier transform of $x_{1}$ multiple $x_{2}$ is the convolution of $X_{1}(j w) * X_{2}(j w)$ that is

$$
\mathcal{F}\left\{x_{1}(t) x_{2}(t)\right\}=X_{1}(j w) * X_{2}(j w)
$$

b.) Given a frequency response $H\left(e^{j w}\right)$, where $w \in(-\pi, \pi)$,

$$
H\left(e^{j w}\right)=\frac{1+e^{-2 j w}}{1+\frac{9}{16} e^{-2 j w}}
$$

Determine the overall output $y[n]$, when the input is:

$$
x[n]=2 \cos \left(\frac{\pi}{2} n\right)+\cos (\pi n)+4 \sin (\pi n)
$$

## Question 2

Consider an LTI system whose response to the input

$$
x(t)=\left[e^{-t}+e^{-3 t}\right] u(t)
$$

is

$$
y(t)=\left[2 e^{-2 t}-2 e^{-4 t}\right] u(t)
$$

(a). Find the frequency response of this system,
(b). Determine the system's impulse response.

## Question 3

Use the properties of the Fourier Transform to prove the following statement
Let $y(t)=x(t) * h(t)$. Prove: If $|H(j w)|=1$ for all $w$, then

$$
\int_{-\infty}^{\infty}|y(t)|^{2} d t=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

## Question 4

Consider the signal

$$
x(t)=e^{-t}[u(t)-u(t-1)]
$$

Determine the Fourier transform of each of the signals shown in figure. 1


Figure 1: Shape

## Question 5

Consider LTI system that is related by the differential equation

$$
y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t)=2 x(t)
$$

(a) Find the impulse response of this system
(b) What is the Fourier transform of the output $Y(j w)$, if $x(t)=e^{-2 t} u(t)$

