ECE301

HW 6

Due on Thursday Dec. 1st

Please provide steps to explain your answer
T.A.: Jing Guo
email: guo349@purdue.edu
Office Hour change: MSEE180
(9:30am - 10:30am Monday and Wednesday)

Question 1

Consider the impulse response and input signal

$$
x[n]=a^{n} u[n], \quad h[n]=\delta\left[n-n_{0}\right]
$$

(a) $x_{1}[n]=x[n] * x[n]$
(b) $x_{2}[n]=x[n-1]+x[n+1]$
(c) $y[n]=x[n] * h[n]$
(d) $x_{3}[n]=\sum_{m=-\infty}^{n} x[m]$ Determine fourier transform of $x_{1}[n], x_{2}[n]$, and $y[n]$,
$X_{1}\left(e^{j w}\right), X_{2}\left(e^{j w}\right), Y\left(e^{j w}\right)$, and $X_{3}\left(e^{j w}\right)$

Question 2

Consider the periodic signal

$$
\begin{aligned}
& x[n]=\cos \left(w_{0} n\right) \\
& y[n]=\sin \left(w_{0} n\right)
\end{aligned}
$$

(a) Determine Fourier transform of $\mathrm{x}[\mathrm{n}], X\left(e^{j w}\right)$
(b) Determine Fourier transform of $\mathrm{y}[\mathrm{n}], Y\left(e^{j w}\right)$
(c) Determine Fourier transform of $2 \mathrm{x}[\mathrm{n}]+3 \mathrm{y}[\mathrm{n}]$

Question 3

Consider an LTI system

$$
\begin{aligned}
& x[n]=a^{n} u[n] \\
& y[n]=(n+1) a^{n} u[n]+a^{n} u[n]
\end{aligned}
$$

where $a \neq b \neq c$.
Determine impulse response $\mathrm{h}[\mathrm{n}]$

Question 4

Consider the signals

$$
\begin{aligned}
& x_{1}[n]=\left(\frac{1}{2}\right)^{n-1} u[n-1] \\
& x_{2}[n]=\left(\frac{1}{2}\right)^{|n|} \cos \left(\frac{\pi}{8}(n-1)\right)
\end{aligned}
$$

Find Fourier transform of $x_{1}[n]$ and $x_{2}[n], X_{1}\left(e^{j w}\right)$ and $X_{2}\left(e^{j w}\right)$

Question 5

Consider an LTI system described by the following difference equation

$$
y[n]-\frac{1}{2} y[n-1]=x[n]
$$

(a) Determine the system's frequency response $H\left(e^{j w}\right)$
(b) Determine the system's impulse response $\mathrm{h}[\mathrm{n}]$
(c) If the input signal $x[n]=\left(\frac{1}{3}\right)^{n} u[n]$, what is the output $\mathrm{y}[\mathrm{n}]$

(Extra Points)Question 6

Given the input signal

$$
x[n]=y_{(2)}[n]+2 y_{2}[n-1]
$$

where $x[n]$ can be displayed as,

$$
x[n]=u[n]-u[n-10]+\delta[n-1]+\delta[n-3]+\delta[n-5]+\delta[n-7]+\delta[n-9]
$$

Find the fourier transform of $X\left(e^{j w}\right)$

