ECE301

HW 7

DUE ON THURSDAY DEC. 8TH

Please provide steps to explain your answer T.A.: Jing Guo email: guo349@purdue.edu Office Hour change: MSEE180 (9:30am - 10:30am Monday and Wednesday)

Question 1

A signal $\mathbf{x}(t)$ with Fourier transform X(jw) undergoes impulse-train sampling to generate

$$x_p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$$

where $T = 10^{-4}s$. For each of the following sets of constraints on x(t) and/orX(jw), does the sampling theorem guarantee that x(t) can be recovered exactly from $x_p(t)$?

a.) X(jw) = 0 for $|w| > 4000\pi$ b.) X(jw) = 0 for $|w| > 14000\pi$ c.) $Re\{X(jw)\} = 0$ for $|w| > 4000\pi$ d.) x(t) real and X(jw) = 0 for $w > 4500\pi$ e.)X(jw) * X(jw) = 0 for $|w| > 14000\pi$ f.) |X(jw)| = 0 for $|w| > 4500\pi$

Question 2

a.) The signal $x_a(t) = u(t+2) - u(t-2)$ is sampled every $T_s = 0.5s$ to form $x[n] = x_a(nT_s)$. Determine a closed-form expression for the DTFT $X(e^{jw})$ of the x[n]. Check table 5.2 in the textbook

b.) The signal $x_a(t) = t\{u(t+2) - u(t-2)\}$ is sampled every $T_s = 0.5s$ to form $x[n] = x_a(nT_s)$. Determine a closed-form expression for the DTFT $X(e^{jw})$ of the x[n].

Question 3

Consider the input signal $x_p(t)$ below

$$x_0(t) = e^{-j25t} + e^{-j15t} + e^{-j5t} + 1 + e^{j5t} + e^{j15t} + e^{j25t}$$

This signal is first input to an analog filter with impulse response (hints check table 4.2)

$$h_{LP}(t) = \frac{\sin(16t)}{\pi t} + \frac{\sin(20t)}{\pi t} + \frac{\sin(30t)}{\pi t}$$

to form $x(t) = x_0(t) * h_{LP}(t)$. x(t) is sampled as a rate of $w_s = 60$ to form x[n]. The DT signal x[n] is then went through DT LTI system with impulse response

$$h[n] = \frac{\sin(\frac{\pi}{3}n)}{\pi n} + \frac{\sin(\frac{2\pi}{3}n)}{\pi n}$$

a.) Plot both Fourier Transform of $h_{LP}(t)$ and the DTFT of h[n].

b.) Write your expression for the output y[n]

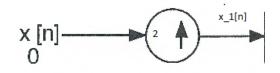


Figure 1

Question 4

Consider the continuous-time signal $x_a(t)$ below.

$$x_a(t) = T_s \{ \frac{\sin(15t)}{\pi t} + \frac{\sin(20t)}{\pi t} + \frac{\sin(30t)}{\pi t} \}$$

a.) A discrete-time signal is created by sampling $x_a(t)$ according to $x[n] = x_a(nT_s)$ for $T_s = \frac{2\pi}{60}$. Plot the DTFT of x[n], over $-\pi < w < \pi$ b.) Repeat part (a) for $T_s = \frac{2\pi}{50}$. Sketch the DTFT of x[n], over $-\pi < w < \pi$. hints: check table 5.2 from text book

Question 5

a.) Consider the continuous time signal x(t) below. A discrete time signal is created by sampling x(t) according to $x[n] = x(nT_s)$ with $T_s = \frac{\pi}{10}$. Plot the magnitude of the DTFT of x[n], over $-\pi < w\pi$

$$x(t) = T_s \left(\frac{\sin(10t)}{\pi t} + \frac{\sin(5t)}{\pi t}\right)$$

b.) The discrete-time signal, $x_1[n]$, is created by running x[n] from part(a) through the DT system see Fig.1

$$h_1[n] = 3\frac{\sin(\frac{\pi n}{3})}{\pi n}$$

hints: Upsampling