ECE301

Test 1

Please provide steps to explain your answer
 name: student ID:

Question 1 (25pts)

Sketch and label carefully each of the following signals:
a.) $x_{1}(t)=u(t)-u(t-5)$
b.) $x_{2}(t)=\left(x_{1}(2 t+1)+x_{1}(2 t-1)\right) u(t)$
b.) $x_{3}[n]=u[n]-u[n-3]$
c.) $x_{4}[n]=x_{3}\left[(n+1)^{2}\right]$

Question 2 (20pts)

For the system given below, $\mathrm{x}[$.$] denotes the input, \mathrm{y}[$.$] denotes the output, and$ $\mathrm{u}[$.$] denotes the unit step function. Determine whether the system is linear,$ time-invariant, memoryless, causal, and boundedinput/bounded output stable. Carefully justify you answers (a simple "yes" or "no" will not suffice); proving or giving a counterexample provides the best justification.

$$
y[n]=x[2 n]+\sum_{k=-\infty}^{2 n^{2}} 3^{-k}
$$

Question 3 (20pts)

Evaluate the convolution $x(t) * h(t)$, where
$x(t)=u(t-1)+u(-3)-2 u(t-4)$ and $h(t)=e^{-t}[u(t)-(u(t-1)]$

Figure 1: Shape

Question 4 (20pts)

The periodic signal $\mathrm{x}[\mathrm{n}]$ in fig. 1 is the input to an LTI system with frequency response

$$
H\left(e^{j w}\right)=\frac{e^{j w}}{e^{j w}-.5}
$$

(a). What is the period
(b). Find the Fourier series representation of $\mathrm{x}[\mathrm{n}]$.
(c). Find the Fourier series of the output of the system $y[n]$.

Figure 2: Shape

Figure 3: Shape

Question 5 (15pts)

Consider the square wave in Fig. 2
(a). Find Fourier series coefficients
(b). Find Fourier transform

Consider the square wave in Fig. 3
(a). Find the Fourier transform

