The goal here is to randomly and with equal probability create an algorithm that generates a number 1 through 7: $\mathrm{F}(7)$.

You can use multiplication, division, addition, subtraction, and modulus (note that modulus was assumed to be a basic algebraic operation when writing the problem).

You can also (and will need to) run the random generator $\mathrm{F}(5)$ twice.

To do this, you must create a 5 by 5 matrix with all values from 1 through 25 , inclusive, nonrepeated:

MATRIX 1				
1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

To understand why you have to make this, look at the matrix instead in this way:

MATRIX 2				
1	2	3	4	5
6	7	1	2	3
4	5	6	7	1
2	3	4	5	6
7	0	0	0	0

If we were to throw darts at MATRIX 2, there's an equal probability of landing on 1 through 7. If we land on 0 , we ignore this result and throw a dart again.

To create MATRIX 1, an acceptable solution (but probably not the only one) is:

$$
\mathrm{I}=5^{*}(\mathrm{~F}(5)-1)+\mathrm{F}(5)
$$

Note that this equation results in all numbers from 1 to 25 inclusive, and does not repeat any of these values. This equation populates MATRIX 1. To turn MATRIX 1 into MATRIX 2, you use the following equation:

$$
(\mathrm{I} \% 7)+1
$$

Which results in:

$$
\text { MATRIX } 2 \text { (incorrect) }
$$

1	2	3	4	5
6	7	1	2	3
4	5	6	7	1
2	3	4	5	6
7	2	3	4	5

However, throwing a dart at this matrix does not give a probability of $1 / 7^{\text {th }}$

To fix this, we only run the second equation when I is $=<21$

$$
\text { This gives use the correct MATRIX } 2
$$

MATRIX 2

1	2	3	4	5
6	7	1	2	3
4	5	6	7	1
2	3	4	5	6
7	0	0	0	0

Thus, the final solution is:

$$
\mathrm{I}=5^{*}(\mathrm{~F}(5)-1)+\mathrm{F}(5)
$$

$$
\begin{aligned}
& \text { If }(\mathrm{I}<=21)\{ \\
& \qquad(\mathrm{I} \% 7)+1 \\
& \}
\end{aligned}
$$

Else \{
Run first equation again
\}
//Note that code or pseudocode is not necessary in your solution and is only used for clarity (hopefully) in this solution

