
Problem 1 (0.6 points) 

Given a graph where each node has a unique integer id between 0 and numNodes - 1, and all edges are 

of equal weight, find the shortest path between two nodes, start and dest, in O(n) time. Each node has a 

maximum number of connections k that does not scale with the number of vertices n. You may write 

psudocode or a detailed description. 

 

Solution 

Think of the graph as a tree with the start node as the root, and apply a breadth-first traversal until the 

destination is reached. Since we visit each node at most once, the complexity is O(n). Note that we don’t 

even need the assumption that k doesn’t scale with n. 

Problem 2 (0.7 points) 

Non_Recursive_QuickSort(A, Pivot, hi, lo) //performs 1 iteration of pivot sort on an array for a given 

pivot, and returns the correct index of the pivot. 

    swap A[hi] with A[index of Pivot]    
    pivot := A[hi] 
    i := lo        // place for swapping 
    for j := lo to hi – 1 do 
        if A[j] ≤ pivot then 
            swap A[i] with A[j] 
            i := i + 1 
    swap A[i] with A[hi] 
    return i //returns correct index of pivot 
 
 
Bad_bogo(A) 
    for 1 to 100 do 
 shuffle A 
    return 
 
Array Nums //an array of all integers 1 to 100 
 
 
Using the above functions and predefined array implement a function to generate a random integer 
between two bounds min and max exclusively. 
Given the limits min and max will always be within 1 to 100. 
 
int Randint(min,max, Nums) //returns a random integer. Nums is given array above. 
 
 
 
 
 
 



 
 
 
Solution 
 
int Randint(min,Max, Nums) 
 Bad_bogo(Nums) 
 Non_Recursive_QuickSort(Nums, Min, Nums.length()/or 100, 0) 
 Non_Recursive_QuickSort(Nums, Max, Nums.length()/or 100, 0/or Min) 
 return Nums[(Min + Max)/2] 
 
Problem 3 (0.7 points) 
 

Proof of Prim’s Algorithm by induction 

Base case: Consider graph M with m vertices and graph N with n vertices. m = 1, n = 1. A graph with only 

1 vertex is a minimum spanning tree of itself, so we have 2 minimum spanning trees that span graphs of 

m vertices and n vertices.  

Inductive Step: Assume we found the minimum spanning trees for each of graph M and graph N. 

Conclusion: If we choose the edge with least weight that connects a vertex in graph M to a vertex in 

graph N, this edge has to be in the minimum spanning tree of a graph that consists of all the m+n 

vertices. Because we have already found the minimum spanning trees for each of the two subgraphs, 

adding this edge connects the two minimum spanning trees and thus form the minimum spanning tree 

for the new graph of vertices m+n. 

When finding the minimum spanning tree with Prim’s Algorithm, the vertices already connected form 

the set of m vertices and the new vertex to be added forms a graph of n=1 vertex. Hence, Prim’s 

Algorithm is proved. 

Is the proof right or wrong? If it is wrong, what is the mistake in the proof? 

Solution 

It is wrong. Adding an edge with least weight to connect minimum spanning trees of m vertices and n 

vertices does not guarantee to form a minimum spanning tree of m+n vertices. Consider this case: 

 



If v1 is in Graph M and v2 and v3 are in Graph N, with this algorithm, a spanning tree will be found to 

have edges v1-v2 and v2-v3; however, the minimum spanning tree of all three vertices is formed by 

choosing edges v1-v2 and v1-v3. 

 


