
1

ECE368 Exam 2

Spring 2016

Thursday, April 7, 2016

15:00-16:15pm

ARMS 1010

READ THIS BEFORE YOU BEGIN

This is a closed-book, closed-notes exam. Electronic devices are not allowed. The time allotted

for this exam is exactly 75 minutes.

Always show as much of your work as practical - partial credit is largely a function of the clarity

and quality of the work shown. Be concise. It is fine to use the blank page opposite each equation

(or at the back of each question) for your work. Do draw an arrow to indicate that if you do so.

This exam consists of 10 pages; please check to make sure that all of these pages are present

before you begin. Credit will not be awarded for pages that are missing – it is your responsibility

to make sure that you have a complete copy of the exam.

IMPORTANT: Write your login at the TOP of EACH page. Also, be sure to read and sign the

Academic Honesty Statement that follows:

“In signing this statement, I hereby certify that the work on this exam is my own and

that I have not copied the work of any other student while completing it. I understand

that, if I fail to honor this agreement, I will receive a score of ZERO for this exam and

will be subject to possible disciplinary action.”

Printed Name:

Login:

Signature:

DO NOT BEGIN UNTIL INSTRUCTED TO DO SO …

Login: ________________

2

1. MergeSort (20 Pts Total)

The following code implements mergesort recursively:

void Mergesort (int *arr, int first, int last) {

if (first >= last)

 return;

 int mid = (first + last)/2;

 Mergesort (arr, first, mid);

 Mergesort (arr, mid, last);

 Merge (arr, first, mid, last); // Merge(arr, first, mid, last) merges the two sorted sub-lists

 // arr[first:mid-1] and arr[mid:last-1] into a single sorted list

}

The left figure shows the partitioning process and the right shows the merging process when the

input array is arr = [1, 3, 5, 7].

a) (10 pts) Consider an unsorted array arr = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7]. As in the

preceding figures, show the partitioning process and merging process when Mergesort

is applied.

(Question 1 continued on the next page)

correct → 10points,

half correct → 7 points,

[4,1,3][2,16][9,10,14][8,7] →

6points,

wrong → 3points

Login: ________________

3

b) (10 pts) Mergesort can also be implemented iteratively as follows:

void Iter_Mergesort (int *arr, int n) {

int size=1;

while (size<n) {

 int i=0;

 while (i < n-size) {

 Merge (arr, i, i+size, min(i+2*size, n));

 // Merge(arr, first, mid, last) merges the two sorted sub-lists

 // arr[first:mid-1] and arr[mid:last-1] into a single sorted list

 i = i + 2*size;

 }

 size *= 2;

}

}

Consider an unsorted array arr = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7]. As in the preceding

figures, show the merging process when Iter_Mergesort is applied.

correct → 10points,

more than half → 5-6points

wrong → 3points

Login: ________________

4

2. Heaps and HeapSort (20 Pts Total)

It is required to implement the code for the HeapSort Algorithm that we discussed in class. You

may assume the functions “parent, left and right” have been implemented already.

//Returns index of parent node given index of child
int parent(int child_index);

//Return index to left or right child of a parent node
int left(int index_parent);

int right(int index_parent);

// Convert the array representation of a complete tree into a heap of size n
void max_heapify(int *Array, int N);

// Pop and return the top of a heap defined in an array of size n
int max_heap_pop(int *Array, int N);

//Heap Sort

void heapsort(int *Array, int N)

{

 max_heapify(Array,N);

 for (int i=n-1; i > 1; --i)

 array[i] = max_heap_pop(Array, i+1);

}

a) Implement the functions max_heapify (10 Pts) and max_heap_pop (10 Pts). You may

write C code or list each step of your function in bullet points.

(extra space is given on the next page)

Login: ________________

5

Many possible solutions but the pseudo codes are:

-𝑀𝑎𝑦 𝑎𝑙𝑠𝑜 𝑠𝑡𝑎𝑟𝑡 𝑤𝑖𝑡ℎ 𝑎 𝑠𝑢𝑏ℎ𝑒𝑎𝑝 𝑎𝑡 𝑖 = 𝑁/2 𝑎𝑛𝑑 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖.

- Swap parent with largest child if child > parent. (Downward Heapify)

- If swap was made, heapify on the child that was swapped (either with

recursion or with a while loop) as long as child < N.

Max Heapify (Array, N)

 𝒇𝒐𝒓 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁

 𝑖𝑛𝑑𝑒𝑥 = 𝑖

 𝒘𝒉𝒊𝒍𝒆(𝐴𝑟𝑟𝑎𝑦[𝑝𝑎𝑟𝑒𝑛𝑡(𝑖𝑛𝑑𝑒𝑥)] < 𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥] && 𝑖𝑛𝑑𝑒𝑥 > 0)

𝑠𝑤𝑎𝑝(𝐴𝑟𝑟𝑎𝑦, 𝑖𝑛𝑑𝑒𝑥, 𝑝𝑎𝑟𝑒𝑛𝑡)

 𝑖𝑛𝑑𝑒𝑥 = 𝑝𝑎𝑟𝑒𝑛𝑡(𝑖𝑛𝑑𝑒𝑥)

 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

 𝒆𝒏𝒅 𝒇𝒐𝒓

𝒆𝒏𝒅 𝑴𝒂𝒙 𝑯𝒆𝒂𝒑𝒊𝒇𝒚

Grading Criteria.

+3 Points if swapped when parent is larger.

+3 Pts if looped through all the nodes.

+2 Pts if used while/recursion to check next parent/children.

+2 Pts if checked for boundary conditions.

-Start from top node traversing in a BFS.

-Upward Heapify for each node:

 -If child is smaller than parent, swap.

 -Repeat swapping until parent is larger.

Login: ________________

6

Grading Criteria.

+3 Points if returned Array[0].

+3 Points if heapified on reduced-size heap

 (swapped with largest child).

+2 Pts if used while/recursion to check next parent/children.

+2 Pts if checked for boundary conditions.

Max_Heap_Pop (Array, N)

 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 𝐴𝑟𝑟𝑎𝑦[0]

 𝐴𝑟𝑟𝑎𝑦[0] = 𝐴𝑟𝑟𝑎𝑦[𝑁 − 1]

 𝑖𝑛𝑑𝑒𝑥 = 0
 𝒘𝒉𝒊𝒍𝒆(𝑖𝑛𝑑𝑒𝑥 < (𝑁 − 1)/2)

 𝒊𝒇 (𝐴𝑟𝑟𝑎𝑦[𝑙𝑒𝑓𝑡(𝑖𝑛𝑑𝑒𝑥)] > 𝐴𝑟𝑟𝑎𝑦[𝑟𝑖𝑔ℎ𝑡(𝑖𝑛𝑑𝑒𝑥)])

 𝑀𝑎𝑥𝐶ℎ𝑖𝑙𝑑 = 𝐴𝑟𝑟𝑎𝑦[𝑙𝑒𝑓𝑡(𝑖𝑛𝑑𝑒𝑥)]

 𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥 = 𝑙𝑒𝑓𝑡(𝑖𝑛𝑑𝑒𝑥)

 𝒆𝒍𝒔𝒆

 𝑀𝑎𝑥𝐶ℎ𝑖𝑙𝑑 = 𝐴𝑟𝑟𝑎𝑦[𝑟𝑖𝑔ℎ𝑡(𝑖𝑛𝑑𝑒𝑥)]

 𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥 = 𝑟𝑖𝑔ℎ𝑡(𝑖𝑛𝑑𝑒𝑥)

 𝒆𝒏𝒅 𝒊𝒇

 𝒊𝒇(𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥] ≥ 𝐴𝑟𝑟𝑎𝑦[𝑀𝑎𝑥𝐶ℎ𝑖𝑙𝑑]

 𝑏𝑟𝑒𝑎𝑘

 𝒆𝒍𝒔𝒆

 𝑠𝑤𝑎𝑝 (𝐴𝑟𝑟𝑎𝑦, 𝑖𝑛𝑑𝑒𝑥, 𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥)

 𝑖𝑛𝑑𝑒𝑥 = 𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥;

 𝒆𝒏𝒅 𝒊𝒇

 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

Return maximum;

𝒆𝒏𝒅 𝑴𝒂𝒙_𝑯𝒆𝒂𝒑_𝑷𝒐𝒑

-Store Array[0]

-Replace Array[0] with last node in

heap.

-Heapify down replacing parent with

its largest child recursively/while

loop.

-Return stored value

-Many students used their Max_Heapify function. They

received full credit if they specified a size reduced heap.

Otherwise they got -2 Pts.

-Many students did not replace root node with last node in the

heap. They still got full credit but should note that by omitting

that step, they do not keep a complete B-tree.

Login: ________________

7

3. QuickSort (25 Pts Total)

a) (10 pts) Sort the following list using quicksort (Make pivot be the 1st element of the sub-

array and use insertion sort for any sub-list of size 4 or less). Show the new array in every

step (including when n < 5).

34 15 65 59 68 42 40 80 50 65 23

Solution 1

34
(pivot)

15 65 59 68 42 40 80 50 65 23

(swap: 65 - 23)

34
(pivot)

15 23 59 68 42 40 80 50 65 65

(swap: 34 - 23)

23 15 34 59 68 42 40 80 50 65 65

(insertion sort: {23, 15})

15 23 34 59
(pivot)

68 42 40 80 50 65 65

(swap: 68 - 50)

15 23 34 59
(pivot)

50 42 40 80 68 65 65

(swap: 59 - 40)

15 23 34 40 50 42 59 80 68 65 65

(insertion sort: {40, 50, 42} {80, 68, 65, 65})

15 23 34 40 42 50 59 65 65 68 80

Login: ________________

8

Solution 2

34
(pivot)

15 65 59 68 42 40 80 50 65 23

 (swap: 34 - 23)

23 15 65 59 68 42 40 80 50 65 34
(pivot)

(swap: 65 - 34)

23 15 34 59 68 42 40 80 50 65 65

(insertion sort: {23, 15})

15 23 34 59
(pivot)

68 42 40 80 50 65 65

(swap: 59 - 65)

15 23 34 65 68 42 40 80 50 65 59
(pivot)

(swap: 65 - 50)

15 23 34 50 68 42 40 80 65 65 59
(pivot)

(swap: 68 - 40)

15 23 34 50 40 42 68 80 65 65 59
(pivot)

(swap: 68 - 59)

15 23 34 50 40 42 59 80 65 65 68

(insertion sort: {50, 40, 42} {80, 65, 65, 68})

15 23 34 40 42 50 59 65 65 68 80

Question 3 continued on the next page)

correct → 10points,

minor mistake → 6-8points

major mistake → 3-5points

otherwise → 0-2points

Login: ________________

9

b) (5 Pts) What is the average memory requirement?

O(ln n) for stack memory.

c) (3 Pt) Suppose you are asked to implement an efficient QuickSort and your team is

debating about four different approaches to choose a pivot, which one is the best option?

i) Pick a random element in array.

ii) Pick 3 random elements in array and find the median.

iii) Do part ii) 3 times and pick median of the 3 medians.

iv) Pick first, medium, and last element of the array and find median.

d) (7 Pts) Justify your answer to part c).

-If you assume to have a large n, the goal is to find the pivot which will split the array in

two perfect halves (
1

2
𝑛,

1

2
𝑛). This would be picking the exact median.

-Choosing random pivots will divide(on average) items into sets of size
1

4
𝑛 𝑎𝑛𝑑

3

4
𝑛.

-Choosing random elements and finding the median of three will yield(on average) a

partition of:
5

16
𝑛, 𝑎𝑛𝑑

11

16
𝑛.

-Similarly, choosing median of first, medium and last element will divide (on average)

items into sets of
5

16
𝑛,

11

16
𝑛 since these numbers are random too.

-By choosing median of 3 for 3 times, you increase your sample size which will give you

a pivot closer to the true median (
𝑛

2
,

𝑛

2
) while not increasing the time complexity

significantly.

correct → 5points,

otherwise → 1points

correct → 3 points,

otherwise → 1points

-Mention it has a closer value to the true median: 7 Pts

-Choosing option iv) and arguing a better distribution or

more efficient time complexity than option iii): 5 Pts.

-All other answers will vary depending on robustness.

Login: ________________

10

4. Choosing Sorting Algorithms (15 Pts Total)

You are given an array of N items to sort. You know that the value of each integer falls between

1 and 1000N.

a) (5 Pts) What is the algorithm that gives the best asymptotic time complexity?

 Bucket Sort (because the maximum value m=O(n)), the asymptotic time complexity is then

 O(m+n)=O(n)

 Correct 5 points

 Radix Sort 3 or 4 points

Other Sorting algorithm 0 to 2 points (depending on justification or further explanation)

b) (10 Pts) Explain how this algorithm works and give its time complexity in Big-O

notation?

 Description of Bucket Sort available in lecture slides

 Correct description of bucket sort 10 points

 Incomplete description of bucket sort or description of radix sort 7 to 9 points

 Description of other sorting algorithms 4 points or less

Login: ________________

11

5. Graphs (20 Points Total)

a) (5 Pts) What are the conditions on the number of edges |E| in terms of the vertices |V| of

any connected graph?

|E| greater than or equal to |V|-1 (there is also the trivial upper bound on the maximum

number of edges on any graph, |E| is at most “V choose 2”)

 Correct lower bound 5 points

 Only the trivial upper bound 1 point

b) (6 Pts) Justify the conditions for part a).

 Proof by induction:

 Base case: A graph with two vertices is connected only if it has at least one edge

 Induction hypothesis: Any connected graph with n vertices has to have at least n-1 edges

 Induction Step: We want to prove that any graph with n+1 vertices has to have at least n

 edges. Consider the vertex induced subgraph of the vertices 1 up to n, if the original graph

 is connected, then the new subgraph is connected. By the induction hypothesis, the

 subgraph has at least n-1 edges. Further, if the original graph is connected, then the vertex

 n+1 has to have at least one edge to the considered subgraph. It follows that the original

 graph has to have at least n edges.

 Correct proof 6 points

 Just correct intuition 2 to 4 points

 Proof of trivial upper bound 0 or 1 point

c) (3 Pts) Is the following statement true or false?

 C1: Any connected graph is a forest

 False

 Correct 3 points

 Not Correct 0 points

d) (6 Pts) Justify your answer to part c).

A Forest is an acyclic graph, a connected graph can have cycles

Correct 6 points

Example without justification 2 to 4 points

Proof that statement is true 0 points

Login: ________________

12

Question Score

Q1 /20

Q2 /20

Q3 /25

Q4 /15

Q5 /20

Total /100

