
© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 12

1.2 Mathematical background

In your chosen profession, it will be necessary to make engineering design decisions. When it comes to

programming, you will often have a selection of possible algorithms or data structures; however, when

you compare two algorithms, it is not possible to simply say that “algorithm A is faster than algorithm B”.

Such a comparison qualitatively compares two values, e.g., a > b or b > a. From the Oxford English

Dictionary (OED):

qualitative, a. Relating to, connected or concerned with, quality or qualities.

Now usually in implied or expressed opposition to quantitative.

Engineering design decisions must be made by choosing a metric, measuring the possible alternatives

using that metric, and comparing the two measurements, or quantities. Thus, we require a quantitative

comparison:

quantitative, a. Relating to, concerned with, quantity or its measurement;

ascertaining or expressing quantity.

We will be able to quantitatively compare algorithms and data structures by looking at relatively rates of

growth in time requirements and memory requirements as the problem size increases. To do this, we will

use mathematics and elementary calculus; however, we will also require a few other tools.

1.2.1 Floor and ceiling functions

The floor function maps any real number x onto the greatest integer less than or equal to x. For example,

3.2 3 3

5.2 6 6

       

          

You can interpret this as rounding toward negative infinity.

The ceiling function maps x onto the least integer greater than or equal to x. For example,

3.2 4 4

5.2 5 5

       

          

The ceiling function can be interpreted as rounding toward positive infinity.

The cmath library implements these two functions as

double floor(double); double ceil(double);

The justification for the return value being double and not a long is that a double-precision floating-

point number can be as large as 2
1024

 while the largest number that can be represented by long is 2
63

 – 1.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 12

1.2.2 L’Hôpital’s rule

If you are attempting to determine the limit

 

 
lim
n

f n

g n

but both  lim
n

f n


 and  lim
n

g n


 , then we can determine the limit by taking the limit of the

derivatives

 

 

   
   

1

1
lim lim
n n

f n f n

g n g n 
 .

This can be repeated as necessary.

Note, that in this course, the k
th
 derivative will always be written as f

(k)
(x), even if k = 1. Thus, we will

prefer f
(1)

(x) and f
(2)

(x) to f ′(x) and f ′′(x).

1.2.3 Logarithms

Recall that if n = e
m
, we define m = ln(n). It is also always true that e

ln(n)
 = n; however, for ln(e

n
) = n, it

must also be true that n is real.

Because exponentials grow faster than any polynomial, that is,

lim
n

dn

e

n
 

for any d > 0, it follows that the inverse, the logarithm, must grow more slowly than any polynomial,

which we can see by applying l’Hopital’s rule once:

 
1

ln 1/ 1 1
lim lim lim 0

d d dn n n

n n

n dn d n  
   .

Thus, the logarithm ln(n) grows more slowly than n or even n
0.01

.

Another property you may have seen but did not appreciate is that all logarithms are scalar multiples of

each other. Recall that

 
 

 

ln
log

ln
b

n
n

b
 ,

and, therefore, lg(n) = log2(n) grows at a factor of 1/ln(2) ≈ 1.4427 (≈ 13/9) faster than ln(n). For

example, Figure 1 shows a plot of log2(n) = lg(n), ln(n), and log10(n).

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 12

Figure 1. A plot of lg(n), ln(n), and log10(n).

A few notes:

1. The base-2 logarithm, log2(n), is written as lg(n),

2. In most libraries, the natural logarithm, ln(n), has the signature double log(double); , and

3. The common logarithm, log10(n), has the signature double log10(double);.

A property of the logarithm that we will repeatedly use is:

n
log

b
 (m)

 = m
log

b
(n)

Finally, it is a useful property that 2
10

 = 1024 is close to 1000:

 lg(2
10

) = 10

 lg(2
20

) = 20

and therefore

 lg(10
3
) ≈ 10 kilo

 lg(10
6
) ≈ 20 mega

 lg(10
9
) ≈ 30 giga

 lg(10
12

) ≈ 40 tera

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 4 of 12

1.2.4 Arithmetic series

An arithmetic series increases by a constant (usually 1) and very often we will use

 

0

1
0 1 2 3

2

n

k

n n
n k




       .

Proof 1: Add the series twice:

 1 + 2 + 3 +
. . .

 + n – 2 + n – 1 + n

 + n + n – 1 + n – 2 +
. . .

 + 3 + 2 + 1

 (n + 1) + (n + 1) + (n + 1) +
. . .

 + (n + 1) + (n + 1) + (n + 1) = n (n + 1)

Having done so, we divide the result by 2. ❚

Proof 2: Using induction, we observe the statement is true for n = 1:

0

0

0
k

k


 and
 0 0 1

0
2

 
 .

Next, we assume that the statement
 

0

1

2

n

k

n n
k




 is true for an arbitrary n. Using this assumption, we

must now show that the statement is also true for n + 1:

 

  

1

0 0

2

2

1

1
1

2

2 2

2

1 23 2

2 2

n n

k k

k n k

n n
n

n n n

n nn n



 

  


  

  


  
 

 

Therefore, the statement is true for n = 0 and the truth of the statement for n implies the truth of the

statement for n + 1. Therefore, by the process of mathematical induction, this statement must be true for

all n ≥ 0. ❚

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 5 of 12

1.2.5 Other polynomial series

It is possible to repeat the above process to prove that the formulas

  2

0

1 2 1

6

n

k

n n n
k



 
 ,

 
22

3

0

1

4

n

k

n n
k




 , and

   2

4

0

1 2 1 3 3 1

30

n

k

n n n n n
k



   


are all true; however, such precision is often unnecessary. Instead, we can usually rely on reasonable

approximations:

2

0

3
2

0

4
3

0

5
4

0

2

3

4

5

n

k

n

k

n

k

n

k

n
k

n
k

n
k

n
k

























In general, we can say that
1

0 1

dn
d

k

n
k

d








 . This is actually a very good approximation: we find it by

approximating the sum by the corresponding integral:

1 1

0 0 0

0
1 1

nn d dn
d d

k x

x n
k x dx

d d

 

 

   
 

  .

The actual sum is the area under the blue piecewise constant function in Figure 2 while the integral is the

area of the red region.

Figure 2. The approximation of
0

n
d

k

k


 by

0

n

dx dx .

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 6 of 12

The accumulating error is shown in Figure 3.

Figure 3. The accumulating error in approximating a sum by an integral.

Fortunately, notice that the error can be shifted into a single column of width 1 and height n
d
, as is shown

in Figure 4.

Figure 4. Shifting the errors in Figure 3.

The area of the entire rectangle in Figure 4 is n
d
 and the part coloured blue is the error

1

0 1

dn
d

k

n
k

d








 .

Now, by inspection, the blue region is half or more of the entire rectangle, and therefore, we have the

inequality

1

02 1

d dn
d d

k

n n
k n

d





  


 .

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 7 of 12

Thus, the error grows no faster than n
d
 but the magnitude of our approximation is

1

1

dn

d




 and therefore the

relative error must go to zero as n becomes large.

Aside: you may note from the error analysis that it might be reasonable to use the following better

approximation:
1

0 1 2

d dn
d

k

n n
k

d





 


 .

This is a significantly better approximation (regardless of the value of d); however, such accuracy will not

be necessary for this class.

You are expected to memorize, if nothing else from this section, the formula and approximation

 

0

1

2

n

k

n n
k




 and

1

0 1

dn
d

k

n
k

d








 .

1.2.6 Geometric series

The value of a finite geometric series can be evaluated using the formula

1

0

1

1

nn
k

k

r
r

r









 .

If |r| < 1 (whether r is real or complex), it is also true that

0

1

1

k

k

r
r








 .

Proof 1: Multiply both sides by
1

1
1

r

r





:

 

0 0

0

0 0

1

0 0

1

1

1

1

1

1

n n
k k

k k

n
k

k

n n
k k

k k

n n
k k

k k

r
r r

r

r r

r

r r r

r

r r

r

 



 



 





















 



 

 

.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 8 of 12

and doing a change-of-index, we get:

1

0 1

0

1

1 1

1

1

1

1

1

1

n n
k k

n
k k k

k

n n
k n k

k k

n

r r

r
r

r r r

r

r

r



 





 








 
   

 









 


 

 ❚

Proof 2: By induction, we note the formula is correct for n = 1:

0 10
0

0

1
1

1

k

k

r
r r

r






  


 .

Assume that the formula is correct for an arbitrary n. In that case, we have

 

1
1

0 0

1
1

1 1

1 2 1

2

1

1

1 1

1

1

1

1

1

n n
k n k

k k

n
n

n n

n n n

n

r r r

r
r

r

r r r

r

r r r

r

r

r




 




 

  



 


 



  




  









 

Therefore, the statement is true for n = 0 and the truth of the statement for n implies the truth of the

statement for n + 1. Therefore, by the process of mathematical induction, this statement must be true for

all n ≥ 0. ❚

Common geometric series that we will see in this class are when r = ½ and r = 2:

 

 

1
1
2

1
0 2

1
1
2

1
0 2

1
1

0

11
2 2

2 1

11
2

2 1

1 2
2 2 1

1 2

nkn
n

k

nk

k

nn
k n

k

















 
   

 

 
  

 


  









© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 9 of 12

1.2.7 Recurrence relations

If the terms in a sequence are given by an explicit formula, it is possible to calculate any term in the

sequence. For example, if
1

nx
n

 then x40 = 0.025.

How much time, however, is it to perform a binary search on a sorted list? The algorithm is:

1. Check the middle entry of an array—if that is the object we’re looking for, return true,

2. If the object is less than the middle entry, do a binary search on the left half, otherwise

3. The object must be greater than the middle entry, so do a binary search on the right half.

If the half that we are searching is ever empty, we return false.

This is a recursive description of the binary search algorithm. We can describe a recursive algorithm

using a recurrence relation; for example, the following are all recurrence relations—the last being the

recurrence relation describing the number of calls to a binary search:

1

1

1

2n n

x

x x 



 

1

1

1

2n n

x

x x n



 

1

1 2

1

n n n

x

x x x 



 

0

/2

1

1n n

x

x x



 

Before we go on, we will introduce an alternative notation. In general, we will use recurrence relations to

describe the run times or memory usage of data structures and algorithms. Consequently, we usually

denote these quantities as T(n) and Mem(n). Therefore, our recurrence relations will usually be written

using functional notation:

 

   

1 1

1 2

f

f n f n



  

 

   

1 1

2 1

f

f n f n n



  

 

     

1 1

1 2

f

f n f n f n



   

 

   

0 1

/ 2 1

f

f n f n



 

We would like to take these and find explicit formulas. In the first two cases, this is relatively easy:

 

   
 

1 1
2 1

1 2

f
f n n

f n f n


  

  

and, with the help of Maple,

 

 
  1

1

1 1
2 1

2

n

n

f
f n n

f n x n






   

 
.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 10 of 12

The last two recurrence relations are slightly more complex. Beyond the scope of this course, it is

possible to show that

 

     

1 1 2 3
()

1 2 5 5

n n
f

f n
f n f n f n

 
 

  
  

   

where
5 1

1.6180
2




  is the golden ratio.

In the last case, there is no closed-form solution, but it can be shown that

 

 
 

1 1

() ln
1

2

f

f n nn
f n f



   
   

  

.

We will investigate such recurrence relations in the topic on divide-and-conquer algorithms.

1.2.8 Weighted averages

Given n objects, x1, x2, ..., xn, the average of these numbers is

1 2 3 nx x x x

n

   
.

If, however, we have a sequence of coefficients c1, c2, ..., cn such that c1 + c2 + ··· + cn

 = 1, we can also

calculate the weighted average

c1x1 + c2x2 + ··· + cnxn.

For example, we can approximate an integral from a to c by taking a weighted average of the values of

the functions at a, b, and c where b is the midpoint, as is shown in Figure X.

Figure X. The integral  
c

a

f x dx .

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 11 of 12

We could take the average of these three points and multiply the result by the width c – a,

       1
3

f a f b f c c a   ;

however, a better solution is to use the weighted average

       1 2 1
6 3 6

f a f b f c c a   .

For example,
2

0

cos() sin(2) 0.9093x dx   . Approximating this with the weighted average yields

      1 2 1
6 3 6
cos 0 cos 1 cos 2 2 0.9150  

while the simple average is significantly less accurate:

     cos 0 cos 1 cos 2
2 0.7494

3

 
 .

1.2.9 Combinations

Given n distinct items, one may ask

“How many ways can you choose k items?”

or, equivalently,

“How many ways can you combine k items from n items?”

For example, given the set {1, 2, 3, 4, 5, 6}, you can choose three items in 20 different ways:

 {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6},

 {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}

The general formula for this is

 

!

! !

n n

k k n k

 
 

 

and this is read “n choose k”. Usually, we will be interested in the specific case where k = 2:

 

 1!

2 2! 2 ! 2

n n nn

n

 
  

 
.

For example, given the set {1, 2, 3, 4, 5, 6}, you can choose two items in 15 different ways:

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}

 {2, 3}, {2, 4}, {2, 5}, {2, 6}

 {3, 4}, {3, 5}, {3, 6}

 {4, 5}, {4, 6}

 {5, 6}

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 1.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 12 of 12

You may have seen these numbers in polynomial expansions:

 
0

n
n k n k

k

n
x y x y

k





 
   

 
 ;

for example,

 
4

4 4

0

4 3 2 2 3 4

4 3 2 2 3 4

4

4 4 4 4 4

0 1 2 3 4

4 6 4

k k

k

x y x y
k

y xy x y x y x

y xy x y x y x





 
   

 

         
             
         

    



You may also have seen these numbers in Pascal’s triangle:

0

0

1 1

0 1

2 2 2

0 1 2

3 3 3 3

0 1 2 3

4 4 4 4 4

0 1 2 3 4

 
 
 

   
   
   

     
     
     

       
       
       

         
         
         

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

