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1.2 Mathematical background 

In your chosen profession, it will be necessary to make engineering design decisions.  When it comes to 

programming, you will often have a selection of possible algorithms or data structures; however, when 

you compare two algorithms, it is not possible to simply say that “algorithm A is faster than algorithm B”.  

Such a comparison qualitatively compares two values, e.g., a > b or b > a.  From the Oxford English 

Dictionary (OED): 

qualitative, a. Relating to, connected or concerned with, quality or qualities. 

Now usually in implied or expressed opposition to quantitative. 

Engineering design decisions must be made by choosing a metric, measuring the possible alternatives 

using that metric, and comparing the two measurements, or quantities.  Thus, we require a quantitative 

comparison: 

quantitative, a. Relating to, concerned with, quantity or its measurement; 

ascertaining or expressing quantity. 

We will be able to quantitatively compare algorithms and data structures by looking at relatively rates of 

growth in time requirements and memory requirements as the problem size increases.  To do this, we will 

use mathematics and elementary calculus; however, we will also require a few other tools. 

1.2.1 Floor and ceiling functions 

The floor function maps any real number x onto the greatest integer less than or equal to x.  For example, 

3.2 3 3

5.2 6 6

       

          
 

You can interpret this as rounding toward negative infinity. 

The ceiling function maps x onto the least integer greater than or equal to x.  For example, 

3.2 4 4

5.2 5 5

       

          
 

The ceiling function can be interpreted as rounding toward positive infinity. 

The cmath library implements these two functions as 

double floor( double );      double ceil( double ); 

The justification for the return value being double and not a long is that a double-precision floating-

point number can be as large as 2
1024

 while the largest number that can be represented by long is 2
63

 – 1. 
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1.2.2 L’Hôpital’s rule 

If you are attempting to determine the limit 

 

 
lim
n

f n

g n
 

but both  lim
n

f n


  and  lim
n

g n


 , then we can determine the limit by taking the limit of the 

derivatives 

 

 

   
   

1

1
lim lim
n n

f n f n

g n g n 
 . 

This can be repeated as necessary. 

Note, that in this course, the k
th
 derivative will always be written as f

(k)
(x), even if k = 1.  Thus, we will 

prefer f
(1)

(x) and f
(2)

(x) to f ′(x) and f ′′(x).  

1.2.3 Logarithms  

Recall that if n = e
m
, we define m = ln(n).  It is also always true that e

ln(n)
 = n; however, for ln(e

n
) = n, it 

must also be true that n is real. 

Because exponentials grow faster than any polynomial, that is, 

lim
n

dn

e

n
   

for any d > 0, it follows that the inverse, the logarithm, must grow more slowly than any polynomial, 

which we can see by applying l’Hopital’s rule once: 

 
1

ln 1/ 1 1
lim lim lim 0

d d dn n n

n n

n dn d n  
   . 

Thus, the logarithm ln(n) grows more slowly than n  or even n
0.01

. 

Another property you may have seen but did not appreciate is that all logarithms are scalar multiples of 

each other.  Recall that 

 
 

 

ln
log

ln
b

n
n

b
 , 

and, therefore, lg(n) = log2(n) grows at a factor of 1/ln(2) ≈ 1.4427  (≈ 13/9) faster than ln(n).  For 

example, Figure 1 shows a plot of log2(n) = lg(n), ln(n), and log10(n). 
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Figure 1.  A plot of lg(n), ln(n), and log10(n). 

A few notes: 

1. The base-2 logarithm, log2(n), is written as lg(n), 

2. In most libraries, the natural logarithm, ln(n), has the signature double log( double ); , and 

3. The common logarithm, log10(n), has the signature double log10( double );. 

A property of the logarithm that we will repeatedly use is: 

n
log

b
 (m)

 = m
log

b
(n)

 

Finally, it is a useful property that 2
10

 = 1024 is close to 1000: 

    lg(2
10

) = 10 

    lg(2
20

) = 20 

and therefore 

    lg(10
3
)  ≈ 10  kilo 

    lg(10
6
)  ≈ 20  mega 

    lg(10
9
)  ≈ 30  giga 

    lg(10
12

) ≈ 40  tera 
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1.2.4 Arithmetic series 

An arithmetic series increases by a constant (usually 1) and very often we will use 

 

0

1
0 1 2 3

2

n

k

n n
n k




       . 

Proof 1:  Add the series twice: 

       1    +       2     +      3     + 
. . .

 +   n – 2  +   n – 1  +     n 

 +   n    +    n – 1  +   n – 2  + 
. . .

 +      3     +      2     +     1  

  (n + 1) + (n + 1) + (n + 1) + 
. . .

 + (n + 1) + (n + 1) + (n + 1)     = n (n + 1)  

 

Having done so, we divide the result by 2.                                                                                                 ❚ 

Proof 2:  Using induction, we observe the statement is true for n = 1: 

0

0

0
k

k


  and 
 0 0 1

0
2

 
 . 

Next, we assume that the statement 
 

0

1

2

n

k

n n
k




  is true for an arbitrary n.  Using this assumption, we 

must now show that the statement is also true for n + 1: 

 

  

1

0 0

2

2

1

1
1

2

2 2

2

1 23 2

2 2

n n

k k

k n k

n n
n

n n n

n nn n



 

  


  

  


  
 

 

 

Therefore, the statement is true for n = 0 and the truth of the statement for n implies the truth of the 

statement for n + 1.  Therefore, by the process of mathematical induction, this statement must be true for 

all n ≥ 0.                                                                                                                                                      ❚ 
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1.2.5 Other polynomial series 

It is possible to repeat the above process to prove that the formulas 

  2

0

1 2 1

6

n

k

n n n
k



 
 , 

 
22

3

0

1

4

n

k

n n
k




 , and 

   2

4

0

1 2 1 3 3 1

30

n

k

n n n n n
k



   
  

are all true; however, such precision is often unnecessary.  Instead, we can usually rely on reasonable 

approximations: 

2

0

3
2

0

4
3

0

5
4

0

2

3

4

5

n

k

n

k

n

k

n

k

n
k

n
k

n
k

n
k

























 

In general, we can say that 
1

0 1

dn
d

k

n
k

d








 .  This is actually a very good approximation:  we find it by 

approximating the sum by the corresponding integral: 

1 1

0 0 0

0
1 1

nn d dn
d d

k x

x n
k x dx

d d

 

 

   
 

  . 

The actual sum is the area under the blue piecewise constant function in Figure 2 while the integral is the 

area of the red region. 

 

Figure 2.  The approximation of 
0

n
d

k

k


  by 

0

n

dx dx . 
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The accumulating error is shown in Figure 3. 

 
Figure 3.  The accumulating error in approximating a sum by an integral. 

Fortunately, notice that the error can be shifted into a single column of width 1 and height n
d
, as is shown 

in Figure 4. 

 
Figure 4.  Shifting the errors in Figure 3. 

The area of the entire rectangle in Figure 4 is n
d
 and the part coloured blue is the error 

1

0 1

dn
d

k

n
k

d








 .  

Now, by inspection, the blue region is half or more of the entire rectangle, and therefore, we have the 

inequality 

1

02 1

d dn
d d

k

n n
k n

d





  


 . 
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Thus, the error grows no faster than n
d
 but the magnitude of our approximation is 

1

1

dn

d




 and therefore the 

relative error must go to zero as n becomes large. 

Aside:  you may note from the error analysis that it might be reasonable to use the following better 

approximation: 
1

0 1 2

d dn
d

k

n n
k

d





 


 . 

 

This is a significantly better approximation (regardless of the value of d); however, such accuracy will not 

be necessary for this class. 

 

You are expected to memorize, if nothing else from this section, the formula and approximation 

 

0

1

2

n

k

n n
k




  and 

1

0 1

dn
d

k

n
k

d








 . 

1.2.6 Geometric series 

The value of a finite geometric series can be evaluated using the formula 

1

0

1

1

nn
k

k

r
r

r









 . 

If |r| < 1 (whether r is real or complex), it is also true that 

0

1

1

k

k

r
r








 . 

Proof 1:  Multiply both sides by 
1

1
1

r

r





: 

 

0 0

0

0 0

1

0 0

1

1

1

1

1

1

n n
k k

k k

n
k

k

n n
k k

k k

n n
k k

k k

r
r r

r

r r

r

r r r

r

r r

r

 



 



 





















 



 

 

. 
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and doing a change-of-index, we get: 

1

0 1

0

1

1 1

1

1

1

1

1

1

n n
k k

n
k k k

k

n n
k n k

k k

n

r r

r
r

r r r

r

r

r



 





 








 
   

 









 


 
 

                                                                                                                                                                     ❚ 

Proof 2:  By induction, we note the formula is correct for n = 1: 

0 10
0

0

1
1

1

k

k

r
r r

r






  


 . 

Assume that the formula is correct for an arbitrary n.  In that case, we have 

 

1
1

0 0

1
1

1 1

1 2 1

2

1

1

1 1

1

1

1

1

1

n n
k n k

k k

n
n

n n

n n n

n

r r r

r
r

r

r r r

r

r r r

r

r

r




 




 

  



 


 



  




  









 

 

Therefore, the statement is true for n = 0 and the truth of the statement for n implies the truth of the 

statement for n + 1.  Therefore, by the process of mathematical induction, this statement must be true for 

all n ≥ 0.                                                                                                                                                      ❚ 

Common geometric series that we will see in this class are when r = ½ and r = 2: 

 

 

1
1
2

1
0 2

1
1
2

1
0 2

1
1

0

11
2 2

2 1

11
2

2 1

1 2
2 2 1

1 2

nkn
n

k

nk

k

nn
k n

k

















 
   

 

 
  

 


  








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1.2.7 Recurrence relations 

If the terms in a sequence are given by an explicit formula, it is possible to calculate any term in the 

sequence.  For example, if 
1

nx
n

  then x40 = 0.025. 

How much time, however, is it to perform a binary search on a sorted list?  The algorithm is: 

1. Check the middle entry of an array—if that is the object we’re looking for, return true, 

2. If the object is less than the middle entry, do a binary search on the left half, otherwise 

3. The object must be greater than the middle entry, so do a binary search on the right half. 

If the half that we are searching is ever empty, we return false. 

This is a recursive description of the binary search algorithm.  We can describe a recursive algorithm 

using a recurrence relation; for example, the following are all recurrence relations—the last being the 

recurrence relation describing the number of calls to a binary search: 

1

1

1

2n n

x

x x 



 
 

1

1

1

2n n

x

x x n



 
 

1

1 2

1

n n n

x

x x x 



 
 

0

/2

1

1n n

x

x x



 
 

 

Before we go on, we will introduce an alternative notation.  In general, we will use recurrence relations to 

describe the run times or memory usage of data structures and algorithms.  Consequently, we usually 

denote these quantities as T(n) and Mem(n).  Therefore, our recurrence relations will usually be written 

using functional notation:  

 

   

1 1

1 2

f

f n f n



  
 

 

   

1 1

2 1

f

f n f n n



  
 

 

     

1 1

1 2

f

f n f n f n



   
 

 

   

0 1

/ 2 1

f

f n f n



 
 

 

We would like to take these and find explicit formulas.  In the first two cases, this is relatively easy: 

 

   
 

1 1
2 1

1 2

f
f n n

f n f n


  

  
 

and, with the help of Maple, 

 

 
  1

1

1 1
2 1

2

n

n

f
f n n

f n x n






   

 
. 
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The last two recurrence relations are slightly more complex.  Beyond the scope of this course, it is 

possible to show that  

 

     

1 1 2 3
( )

1 2 5 5

n n
f

f n
f n f n f n

 
 

  
  

   
 

where 
5 1

1.6180
2




   is the golden ratio. 

In the last case, there is no closed-form solution, but it can be shown that  

 

 
 

1 1

( ) ln
1

2

f

f n nn
f n f



   
   

  

. 

We will investigate such recurrence relations in the topic on divide-and-conquer algorithms. 

1.2.8 Weighted averages 

Given n objects, x1, x2, ..., xn, the average of these numbers is 

1 2 3 nx x x x

n

   
. 

If, however, we have a sequence of coefficients c1, c2, ..., cn such that c1 + c2 + ··· + cn
 
 = 1, we can also 

calculate the weighted average 

c1x1 + c2x2 + ··· + cnxn. 

For example, we can approximate an integral from a to c by taking a weighted average of the values of 

the functions at a, b, and c where b is the midpoint, as is shown in Figure X. 

 

Figure X.  The integral  
c

a

f x dx . 
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We could take the average of these three points and multiply the result by the width c – a, 

       1
3

f a f b f c c a   ; 

however, a better solution is to use the weighted average 

       1 2 1
6 3 6

f a f b f c c a   . 

For example, 
2

0

cos( ) sin(2) 0.9093x dx   .  Approximating this with the weighted average yields 

      1 2 1
6 3 6
cos 0 cos 1 cos 2 2 0.9150    

while the simple average is significantly less accurate: 

     cos 0 cos 1 cos 2
2 0.7494

3

 
 . 

1.2.9 Combinations 

Given n distinct items, one may ask 

“How many ways can you choose k items?” 

or, equivalently, 

“How many ways can you combine k items from n items?” 

For example, given the set {1, 2, 3, 4, 5, 6}, you can choose three items in 20 different ways: 

      {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, 

      {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6} 

The general formula for this is 

 

!

! !

n n

k k n k

 
 

 
 

and this is read “n choose k”.  Usually, we will be interested in the specific case where k = 2: 

 

 1!

2 2! 2 ! 2

n n nn

n

 
  

 
. 

For example, given the set {1, 2, 3, 4, 5, 6}, you can choose two items in 15 different ways: 

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6} 

            {2, 3}, {2, 4}, {2, 5}, {2, 6} 

                        {3, 4}, {3, 5}, {3, 6} 

                                    {4, 5}, {4, 6} 

                                                {5, 6} 
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You may have seen these numbers in polynomial expansions: 

 
0

n
n k n k

k

n
x y x y

k





 
   

 
 ; 

for example, 

 
4

4 4

0

4 3 2 2 3 4

4 3 2 2 3 4

4

4 4 4 4 4

0 1 2 3 4

4 6 4

k k

k

x y x y
k

y xy x y x y x

y xy x y x y x





 
   

 

         
             
         

    



 

 

You may also have seen these numbers in Pascal’s triangle: 

0

0

1 1

0 1

2 2 2

0 1 2

3 3 3 3

0 1 2 3

4 4 4 4 4

0 1 2 3 4

 
 
 

   
   
   

     
     
     

       
       
       

         
         
         

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

 


