
© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 6

4.2 Abstract Trees

Having introduced the tree data structure, we will step back and consider an Abstract Tree that stores a

hierarchical ordering.

4.2.1 Description

An abstract tree stores data that is hierarchically ordered. Operations that may be performed on an

abstract tree include:

1. Accessing the root, and

2. Given a reference to any node within the tree:

a. Get a reference to its predecessor (the node’s parent),

b. Query the number of successors (what is the degree of the node),

c. Get a reference to a child,

d. Attach a new sub-tree as a child of the current node, and

e. Detach the tree rooted at this node from the parent.

In a hierarchical ordering, abstract trees will usually not restrict the degree of a node.

4.2.2 Linked List Implementation

In this elementary implementation of a Tree ADT, we store the children as a linked list of pointers to

those sub-trees. A full implementation of this class is found on the ECE 250 web site under

Algorithms/Trees/Simple_trees/.

#include <algorithm>
#include "Single_list.h"

template <typename Type>
class Simple_tree {
 private:
 Type element;
 Simple_tree *parent_node;
 ece250::Single_list<Simple_tree *> children;

 public:
 Simple_tree(Type const &, Simple_tree * = 0);

 Type retrieve() const;
 Simple_tree *parent() const;

 bool is_root() const;
 bool is_leaf() const;
 int degree() const;

 Simple_tree *child(int n) const;
 int size() const;
 int height() const;

 void attach(Type const &);
 void attach(Simple_tree *);
 void detach();
};

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 6

While looking at these member functions, you can consider calling these member functions on the various

nodes shown in the simple tree shown in Figure 1.

Figure 1. A tree of six nodes stored in the Simple_tree data structure.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 6

4.2.2.1 Basic Functionality

The simple accessing and query member functions have implementations that are similar to what you

would expect from the Single_list and Single_node class.

template <typename Type>
Simple_tree<Type>::Simple_tree(Type const &obj, Simple_tree *p):
element(obj),
parent_node(p) {
 // Empty constructor
}

template <typename Type>
Type Simple_tree<Type>::retrieve() const {
 return element;
}

template <typename Type>
Simple_tree<Type> *Simple_tree<Type>::parent() const {
 return parent_node;
}

template <typename Type>
bool Simple_tree<Type>::is_root() const {
 return (parent() == 0);
}

template <typename Type>
int Simple_tree<Type>::degree() const {
 return children.size();
}

template <typename Type>
bool Simple_tree<Type>::is_leaf() const {
 return (degree() == 0);
}

4.2.2.2 Accesing the n
th

 Child

The user would ask for the n
th
 child. If this is outside the range, we return the zero pointer, otherwise, we

step through the linked list until we reach the n
th
 entry.

template <typename Type>
Simple_tree<Type> *Simple_tree<Type>::child(int n) const {
 if (n < 0 || n >= degree()) {
 return 0;
 }

 ece250::Single_node<Simple_tree *> *ptr = children.head();

 for (int i = 1; i < n; ++i) {
 ptr = ptr->next();
 }

 return ptr->retrieve();
}

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 4 of 6

4.2.2.3 Attaching and detaching children

If we are attaching a new object into the current node to form a child (suppose we hire a new employee or

create a new derived class), we push a new tree onto the back of the linked list:

template <typename Type>
void Simple_tree<Type>::attach(Type const &obj) {
 children.push_back(new Simple_tree(obj, this));
}

To detach a tree, we first check if it is already the root of a tree—in which case we do nothing.

Otherwise, we erase this tree from the children of the parent and set this nodes parent to the zero pointer.

template <typename Type>
void Simple_tree<Type>::detach() {
 if (is_root()) {
 return;
 }

 parent()->children.erase(this);
 parent_node = 0;
}

If, however, we are attaching an already constructed tree, we must be a little more careful. First, if the

tree we are attaching is attached to a different tree, we must detach it from its parent.

template <typename Type>
void Simple_tree<Type>::attach(Simple_tree<Type> *tree) {
 if (!tree->is_root()) {
 tree->detach();
 }

 tree->parent_node = this;
 children.push_back(tree);
}

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 5 of 6

4.2.2.4 A Recursive Size and Height Member Functions

As our first two recursive functions, we will see how we can recursively compute the size (number of

nodes in) and height of a tree.

The size of a tree is one plus the sizes of all the children.

template <typename Type>

int Simple_tree<Type>::size() const {

 int h = 1;

 for (

 ece250::Single_node<Simple_tree *> *ptr = children.head();

 ptr != 0;

 ptr = ptr->next()

) {

 s += ptr->retrieve()->size();

 }

 return s;

}

The height of tree with a single node is zero; however, if there are any children, the height is one more

than the maximum height of the children.

template <typename Type>

int Simple_tree<Type>::height() const {

 int h = 0;

 for (

 ece250::Single_node<Simple_tree *> *ptr = children.head();

 ptr != 0;

 ptr = ptr->next()

) {

 h = std::max(h, 1 + ptr->retrieve()->height());

 }

 return h;

}

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 6 of 6

4.2.3 Array Implementation

An implementation using arrays would be similar to that using a linked list—the implementation,

however, would be more complex.

template <typename Type>
class Simple_tree {
 private:
 Type element;
 Simple_tree *parent_node;
 int child_count;
 int child_capacity;
 Simple_tree *children;

 // Everything else is similar to above
}

template <typename Type>
Simple_tree<Type>::Simple_tree(Type const &obj, Simple_tree *p):
element(obj),
parent_node(p),
child_count(0),
child_capacity(4),
children(new Simple_tree *[child_capacity]) {
 // Empty constructor
}

4.2.4 Locally Defined Orders

The ordering of general trees is usually local:

1. A root node is explicitly defined.

2. A new node is defined as a being a child of a given parent node

3. There is no general definition as to what happens to children when a node is “removed”

4. Given two nodes in a tree, an algorithm must be used to determine any relationship between

them based on the ordering within the tree

