
Answer: 

a) The obvious combinational approach takes theta(2^n), because for each of the n items, we 

either select it or not select it (2 possibilities), so there are 2^n combinations, and we search all 

of them, excluding invalid combinations and comparing all valid ones to obtain the one with 

maximum value. This approach is extremely slow – the museum guards would find you before 

the algorithm was done. 

 

b)  

Define  to be the maximum value that can be attained with weight less than or equal 

to  using items up to  (first  items). 

We can define  recursively as follows: 

  -> 0 items have 0 value 

  if  (the new item is more than the current weight limit) 

->If the item exceeds the weight limit, then look at the next item 

  if . 

->If it doesn’t exceed the weight limit, choose whether or not to take this item based on whether 

or not the recursion on the rest of the items will yield a larger value 

The solution can then be found by calculating . To do this efficiently we can use a table to 

store previous computations. 

The following is pseudo code for the dynamic program: 

 

 1 // Input: 

 2 // Values (stored in array v) 

 3 // Weights (stored in array w) 

 4 // Number of distinct items (n) 

 5 // Knapsack capacity (W) 

 6  

 7 for j from 0 to W do: 

 8     m[0, j] := 0 

 9  

10 for i from 1 to n do: 

11     for j from 0 to W do: 

12         if w[i-1] > w[j] then: 



13             m[i, j] := m[i-1, j] 

14         else: 

15             m[i, j] := max(m[i-1, j], m[i-1, j-(i-1)] + v[i-1]) 

 

 

This runs in O(nW), where n is the number of items and W is the number of pounds the backpack can 

carry. 

 

 

 


