Answer:

a) The obvious combinational approach takes theta(2”n), because for each of the n items, we
either select it or not select it (2 possibilities), so there are 2*n combinations, and we search all
of them, excluding invalid combinations and comparing all valid ones to obtain the one with
maximum value. This approach is extremely slow — the museum guards would find you before
the algorithm was done.

b)

Define (%, W]t be the maximum value that can be attained with weight less than or equal
to W using items up to i(first 1 items).

We can define %, W] recursively as follows:

. m[0, w] = 0. g items have 0 value
. mii, wl=mli -1, wljw; >w (the new item is more than the current weight limit)

->If the item exceeds the weight limit, then look at the next item

m[z, ?.Lf] = ma,x(m[z - 1_, IU]_, m[z — ]._, ur — ?.Ut'] + Ut') ifw; S U

->If it doesn’t exceed the weight limit, choose whether or not to take this item based on whether
or not the recursion on the rest of the items will yield a larger value

The solution can then be found by calculating m[”: W ] To do this efficiently we can use a table to

store previous computations.

The following is pseudo code for the dynamic program:

1 // Input:

2 // Values (stored in array V)
3 // Weights (stored in array w)
4 // Number of distinct items (n)
5 // Knapsack capacity (W)

6

7 for 7 from 0 to W do:

8 m[0, j] := 0

9
10 for i from 1 to n do:
11 for j from 0 to W do:
12 if w[i-1] > w[j] then:



13 m[lr j] = m[j—_lr j]
14 else:
15 m{i, 7]

I
=]
QO
X
-

|
[y

~
[
~
=]
-
|
[y
~
.
|
-
|
[y

+
<]
-

|
=

This runs in O(nW), where n is the number of items and W is the number of pounds the backpack can
carry.



