Answer:

a) The obvious combinational approach takes theta(2ⁿ), because for each of the n items, we either select it or not select it (2 possibilities), so there are 2ⁿ combinations, and we search all of them, excluding invalid combinations and comparing all valid ones to obtain the one with maximum value. This approach is extremely slow – the museum guards would find you before the algorithm was done.

b)

Define m[i, w] to be the maximum value that can be attained with weight less than or equal to w using items up to i (first i items).

We can define m[i,w] recursively as follows:

- $m[0, w] = 0_{\rightarrow 0}$ items have 0 value
- . $m[i, w] = m[i-1, w]_{\text{ if }} w_i > w$ (the new item is more than the current weight limit)

->If the item exceeds the weight limit, then look at the next item

• $m[i, w] = \max(m[i-1, w], m[i-1, w-w_i] + v_i)_{if} w_i \leq w_i$

->If it doesn't exceed the weight limit, choose whether or not to take this item based on whether or not the recursion on the rest of the items will yield a larger value

The solution can then be found by calculating m[n, W]. To do this efficiently we can use a table to store previous computations.

The following is pseudo code for the dynamic program:

```
1 // Input:
2 // Values (stored in array v)
3 // Weights (stored in array w)
4 // Number of distinct items (n)
5 // Knapsack capacity (W)
6
7 for j from 0 to W do:
8 m[0, j] := 0
9
10 for i from 1 to n do:
11 for j from 0 to W do:
12 if w[i-1] > w[j] then:
```

13	m[i, j	:= m[i-1, j]
14	else:	
15	m[i, j	:= max(m[i-1, j], m[i-1, j-(i-1)] + v[i-1])

This runs in O(nW), where n is the number of items and W is the number of pounds the backpack can carry.