Answer:

a) The obvious combinational approach takes theta($\left.2^{\wedge} n\right)$, because for each of the n items, we either select it or not select it (2 possibilities), so there are $2^{\wedge} n$ combinations, and we search all of them, excluding invalid combinations and comparing all valid ones to obtain the one with maximum value. This approach is extremely slow - the museum guards would find you before the algorithm was done.
b)

Define $m[i, w]$ to be the maximum value that can be attained with weight less than or equal to \boldsymbol{w} using items up to $\dot{\imath}$ (first $\dot{\imath}$ items).

We can define $m[i, w]$ recursively as follows:

- $m[0, w]=0_{->} 0$ items have 0 value
- $m[i, w]=m[i-1, w]$ if $w_{i}>w_{\text {(the new item is more than the current weight limit) }}$
->If the item exceeds the weight limit, then look at the next item
- $m[i, w]=\max \left(m[i-1, w], m\left[i-1, w-w_{i}\right]+v_{i}\right)_{\text {if }} w_{i} \leqslant w$.
-> If it doesn't exceed the weight limit, choose whether or not to take this item based on whether or not the recursion on the rest of the items will yield a larger value
The solution can then be found by calculating $m[n, W]$. To do this efficiently we can use a table to store previous computations.

The following is pseudo code for the dynamic program:

```
1 // Input:
2 // Values (stored in array v)
3 // Weights (stored in array w)
4 // Number of distinct items (n)
5 // Knapsack capacity (W)
6
7 for j from 0 to W do:
8 m[0, j] := 0
9
10 for i from 1 to n do:
11 for j from 0 to W do:
12 if w[i-1] > w[j] then:
```

```
        m[i, j] := m[i-1, j]
        else:
        m[i, j] := max(m[i-1, j], m[i-1, j-(i-1)] + v[i-1])
```

This runs in $\mathrm{O}(\mathrm{nW})$, where n is the number of items and W is the number of pounds the backpack can carry.

