—+ | Arbit Pointer Mext Pointer

_1
';
;
;
;

= |
=
\ / - R, gl
\"“-\-\.___ __,_,-"'J E""\-\..___q_\-__- ;H::f’/

SOLUTION

We shall use the above double-linked list as an example to illustrate the solution. This
original list is “List A”. The algorithm shall create a duplicate list called “List B".

Node *duplicate_arbit_double _linked_list(Node *head) {

While (iterate through List A) {

Allocate Node for B

Copy contents of current A node (A,) to newly allocated node (B,)

B, -> next = A, -> next

A, -> next = B, -> next
} //allocate nodes for B, copy node content, and establish next pointers to create
/la pathway that when followed will go: A1,B1,A2,B2,A3,B3,A4,B4,A5,B5

While (iterate through List A) {
B, -> arbit = A, -> arbit -> next
} /lexploit nature of structures and pointers to form arbit-pointer pathways for List B

While (iterate through List A) {
Node *bnode = A, -> next; //note: this is B,
A, -> next = A, -> next -> next
bnode -> next = bnode -> next ->next

}

Return pointer to head of List B

}

Note that each the three loops executes in time n complexity. Thus, the entire algorithm can
be said to operate in O(n) time.

