Cooperation in Large Cellular Networks: Insights and Fundamental Limits

Aly El Gamal

Joint work with Yasemin Karacora, Tolunay Seyfi, Manik Singhal, Meghana Bande (Illinois), Venu Veeravalli (Illinois)

Department of Electrical and Computer Engineering
Purdue University

ITA Workshop, 02/17/17
Cloud-Based Communication

Global Knowledge / Control available at Central nodes
Cloud-Based Coordinated Multi-Point (CoMP)

Enabling centralized approaches:

1. Cell association decisions
2. Transmission schedules

Enabling CoMP Gains for Cell Edge Users
Locally Connected Interference Networks

\[W_1 \xrightarrow{Tx_1} Rx_1 \xrightarrow{\hat{W}_1} \]
\[W_2 \xrightarrow{Tx_2} Rx_2 \xrightarrow{\hat{W}_2} \]
\[W_3 \xrightarrow{Tx_3} Rx_3 \xrightarrow{\hat{W}_3} \]
\[W_4 \xrightarrow{Tx_4} Rx_4 \xrightarrow{\hat{W}_4} \]

Generic Time Varying Channel

\(T_{x \ i} \) connected to \(R_{x \ \{i, i+1, \ldots, i+L\}} \)
Locally Connected Interference Networks

BS: Base Station
MT: Mobile Terminal
Cloud-Based Cell Associations

Each Mobile Terminal can be associated with N Base Stations
Degrees of Freedom (DoF)

\[\text{DoF} = \lim_{\text{SNR} \to \infty} \frac{\text{sum capacity}}{\log \text{SNR}} \]

- **Objective:** Determine Per User DoF as a function of \(N \).

\[\text{PUDoF}(N) = \lim_{K \to \infty} \frac{\text{DoF}(K, N)}{K} \]

What is the optimal cell association?

- **Downlink:** \(\text{PUDoF}_D(N) \)
- **Uplink:** \(\text{PUDoF}_U(N) \)
- **Average:** \(\text{PUDoF}_{UD}(N) \)
Justifying Choices: Network Topology

Local Connectivity:
- Reflects path loss
- Simplifies problem, only consider local cooperation

Large Networks:
- Understand scalability
- Derive insights

Solutions generalize to cellular network models
Justifying Choices: Network Topology

Cellular Network Model
Solutions for $L = 2$ are applicable
Modelling a limited capacity backhaul:

- Each mobile terminal can be associated with N base stations
- Associations reflect the allocation of messages to transmitters in the downlink
- In uplink, associations allow base stations to decode the mobile terminal’s message

Digital Backhaul in both Uplink and Downlink

Solutions can generalize to more practical constraints
Justifying Choices: Degrees of Freedom

Advantages:

1. Simplicity
2. Captures the interference effect (without noise)
3. Highlights the combinatorial part of the problem

Drawbacks:

1. Insensitive to Gaussian noise
2. Insensitive to varying channel strengths
Results: Downlink

Using One-Shot Zero-Forcing:

$$\text{PUDoF}_{ZF}^D(N) = \frac{2N}{2N + L}$$

$$\geq \frac{1}{2}, \forall N \geq \frac{L}{2}$$

Optimal for $L = 1$

Assigning W_i to $\text{Tx} \{i, i + 1, \ldots, i + N - 1\} \Rightarrow \frac{N}{N + L}$
Results: Downlink

Average Backhaul Load B (Associations per message):

$$\text{PUDoF}^{ZF}_D(B, L = 1) = \text{PUDoF}_D(B, L = 1) = \frac{4B - 1}{4B}$$

Compare to $\frac{2N}{2N+1}$

Can achieve $\frac{1}{2}$ using zero-forcing and $B = 1$ for $L \leq 6$

Achieved using convex combination of $N = 2B$ and $N = 2B - 1$
Uplink: Achieving Full DoF

Associating each MT with two BSs connected to it

Message Passing Decoding: Interference-free Degrees of Freedom
Results: Uplink

$$PUDoF^ZF_U(N) \geq \begin{cases}
1 & L + 1 \leq N \\
\frac{N+1}{L+2} & \frac{L}{2} \leq N \leq L \\
\frac{2N}{2N+L} & 1 \leq N \leq \frac{L}{2} - 1
\end{cases}$$

$$\geq \frac{1}{2}, \forall N \geq \frac{L}{2}$$

Higher than Downlink

Is Cooperation useful for $$N < \frac{L}{2}$$?

1M. Singhal, A. El Gamal, “Joint Uplink-Downlink Cell Associations for Interference Networks with Local Connectivity,” submitted to ISIT ’17
Average Uplink-Downlink DoF

Downlink Associations

\[N = 3 \]

Uplink Associations

\[\text{PUDoF} = \frac{1 + \frac{4}{5}}{2} = \frac{9}{10} \]
Average Uplink-Downlink DoF

\[
PUDoF_{UD}(N, L = 1) = \frac{4N-3}{4N-2}
\]
Average Uplink-Downlink DoF

For \(L \geq 2 \):

\[
P_{UD}^{ZF}(N) \geq \begin{cases}
\frac{1}{2} \left(1 + \left(\frac{\left\lceil \frac{L}{2} \right\rceil + \delta + N - (L+1)}{N} \right) \right) & \text{if } L + 1 \leq N \\
\frac{2N}{2N+L} & \text{if } 1 \leq N \leq L
\end{cases}
\]

where \(\delta = (L + 1) \mod 2 \).

For \(L + 1 \leq N \), scheme is different from both downlink and uplink.
Further Questions

1. General network topologies

2. When to simplify into optimizing for uplink / downlink only

3. Constrain average number of cell associations
Deep Fading Block Erasures2

Communication takes place over blocks of time slots.

- Link block erasure probability p (long-term fluctuations).
- Non-erased links are generic (short-term fluctuations).

Maximize average performance

2 A. El Gamal, V. Veeravalli, “Dynamic Interference Management,” Asilomar ’13
Dynamic Linear Interference Network

$\text{Tx } i \text{ can only be connected to receivers } \{i, i + 1\}$

Each of the dashed links can be erased with probability p
Average Degrees of Freedom (DoF)

\[
\text{DoF} = \lim_{\text{SNR} \to \infty} \frac{\text{sum capacity}}{\log \text{SNR}}
\]

\[
PUDoF(N) = \lim_{K \to \infty} \frac{\text{DoF}(K, N)}{K}
\]

- For dynamic topology: PUDoF is a function of \(p \) and \(N \)

\[
PUDoF(p, N) = \mathbb{E}_p [PUDoF(N)]
\]
Cell Association \((N = 1)\)

Theorem

For the Cell Association problem in dynamic Wyner’s linear model,

\[
PUDoF(p, N = 1) = \max \left\{ PUDoF^{(1)}(p), PUDoF^{(2)}(p), PUDoF^{(3)}(p) \right\}
\]

\(PUDoF^{(1)}(p)\): Optimal at high values of \(p\)

\(PUDoF^{(2)}(p)\): Optimal at low values of \(p\)

\(PUDoF^{(3)}(p)\): Optimal at middle values of \(p\)

Achievable through TDMA
Cell Association ($N = 1$): High Erasure Probability

Maximize probability of message delivery
Cell Association ($N = 1$): Low Erasure Probability

Avoiding Interference
Cell Association ($N = 1$): Low Erasure Probability

Avoiding Interference
Cell Association ($N = 1$)

Optimal at middle values of p
Cell Association \((N = 2)^3\)

1. Identified optimal zero-forcing associations

2. As \(p\) goes from 1 to 0, role of cooperation shifts to interference management

3. As \(p\) goes from 0 to 1, role of cooperation shifts to coverage extension

Knowledge of \(p\) is necessary

Needed level of accuracy?

\(^3\)Y. Karacora, T. Seyfi, A. El Gamal, “The Role of Transmitter Cooperation in Linear Interference Networks with Block Erasures,” submitted to ISIT ’17
Conclusions

Cloud-Based Wireless Networks:

- Enabling centralized approaches
- new questions and conclusions
- Value of flexible cell association
- Significant CoMP gains
- Learning network topology?
- Benefit with no CSIT / Ad-hoc networks?
We are writing a book!