
AD61600 Robots and Culture
Prof. Fabian Winkler
Spring 2014

Arduino and iRobot Create

This workshop is about strategies and techniques controlling the iRobot Create with an
Arduino board. This workshop is based on information in the Create Open Interface
manual and adapted to Arduino code. You can find a copy of the Open Interface manual
here:
http://www.irobot.com/filelibrary/pdfs/hrd/create/Create%20Open%20Interface_v2.pdf

Introduction
iRobot Create hardware features:

more information about the iRobot Create can be found in the robot’s manual:
http://www.irobot.com/filelibrary/pdfs/hrd/create/Create%20Manual_Final.pdf

Sensors
The iRobot Create comes with some basic sensors mounted on its platform, they are:

• 2 bump sensors (left, right)
• 4 cliff sensors (left, front left, right, front right)
• 3 wheel drop sensors (left, right, caster (center))
• 2 buttons (labeled advance and play)
• infrared sensor (receiving bytes sent from Roomba remote, home base or user

created devices)
• 1 wall sensor (used with the virtual wall accessory: wall detection/signal

strength)

Winkler, Arduino – iRobot Create workshop, p. 2

Furthermore the iRobot Create allows access to sensor monitoring some of its internal
functions:

• distance the robot has traveled since the distance was last requested (in
millimeters)

• angle the robot has turned since the last time the angle was requested (in
degrees)

• charging state
• battery voltage (in mV)
• current (flowing into the robot’s battery, in mA)
• battery temperature (in degrees Celsius)
• battery charge (in mAh)
• battery capacity (in mAh)
• velocity information (left, right, in mm/s)

Actuators
The iRobot Create Open interface allows access to the following on-board actuators

• wheel motors (speed left, speed right)
• LEDs (play, advance, bi-color power LED)
• speaker (define musical notes)

Using the Arduino board as a controller, other sensors and actuators can be added
easily to the Arduino board’s I/O pins (e.g. photocells, ultrasonic range finders, servo
motors, etc.)

Connecting the Arduino board
Connecting the Arduino board is easy through the cargo bay DB25 connector, in the
diagram below we see the necessary pins:

Winkler, Arduino – iRobot Create workshop, p. 3

Connecting an Arduino UNO board to the iRobot Create:

	

Reading basic sensor values

We are making use of Arduino’s softSerial library, so we can work with two independent
serial ports on one Arduino board. The reason for this is simple: in order to see if the
Arduino can read OI sensor values we need to be able to send requests to OI that return
values (serial call and response) and at the same time communicate these readings back
to the Arduino serial monitor so we can see what values we get. In a later step we can
then trigger driving commands based on the sensor readings. For now however we are
just interested in reading sensor values.

Why do we need two serial ports for this?
It’s simple - we do not want to get our serial values/commands mixed up – OI
commands that we send to the iRobot Create should not show up in the serial monitor
and values we send back to the serial monitor should not be interpreted as OI
commands.

Why don’t we connect the Arduino UNO’s hardware serial port (RX/TX)?

“The serial port output TXD from the Roomba/Create is too weak to drive the RX
serial port (hardware serial port) input of an Arduino properly. This is because of
the USB-Serial converter on the Arduino: it also tries to drive the RX serial port
input via a pullup resistor, but the Roomba does not have enough drive to pull the
RX down below about 2.5 volts, which is insufficient to be reliably detected as a
TTL serial input of 0.”

pin 8 (5V 100mA)

pin 21 (GND)

pin 1 (RX) and pin 2 (TX)

Arduino USB to host computer

iRobot Create cargo bay
DB25 connector

Winkler, Arduino – iRobot Create workshop, p. 4

(from: http://projectsfromtech.blogspot.com/2013/11/irobot-create-arduino-
control.html).

Notes on the Arduino Mega: the Arduino Mega has 4 serial ports, use Serial1(TX1/RX1),
Serial2(TX2/RX2) or Serial13(TX3/RX3) instead of Serial0. You can still use Serial0 to
communicate back to a serial monitor via USB or XBee for debugging if needed.

Here is the Arduino code to read the status of the left cliff sensor:

(download: http://web.ics.purdue.edu/~fwinkler/AD61600_S14/helloCliffSensor.zip)

#include <SoftwareSerial.h>

 //* RX is digital pin 10 (connect to TX of other device - iRobot DB25
 // pin 2)
 //* TX is digital pin 11 (connect to RX of other device - iRobot DB25
 // pin 1)

#define rxPin 10
#define txPin 11
// set up a new software serial port:
SoftwareSerial softSerial = SoftwareSerial(rxPin, txPin);

int inByte = 0; // incoming serial byte

/***
SETUP
***/
void setup()
{
delay(2000); // Needed to let the robot initialize

// define pin modes for software tx, rx pins:
 pinMode(rxPin, INPUT);
 pinMode(txPin, OUTPUT);
// start the the SoftwareSerial port 57600 bps (robot’s default)
 softSerial.begin(57600);

// start hardware serial port
Serial.begin(57600);

softSerial.write(128); // This command starts the OI.
softSerial.write(131); // set mode to safe (see p.7 of OI manual)

}
/***
LOOP
***/
void loop()
{
 softSerial.write(142); // requests the OI to send a packet of
 // sensor data bytes
 softSerial.write(9); // request cliff sensor value specifically
 delay(250); // poll sensor 4 times a second
 if (softSerial.available() > 0) {
 inByte = softSerial.read();
 }
 Serial.println(inByte);
}

	

Winkler, Arduino – iRobot Create workshop, p. 5

When you lift the iRobot Create this is what it should look like in your Arduino serial
window, the values of the cliff sensor are changing from 0 (on the ground) to 1 (in the
air):

	

Making the Robot go Forward
Here is a simple function in Arduino code that makes the robot move forward, it is
based on the Drive serial sequence documented in the Open Interface manual on page
9: [137] [Velocity high byte] [Velocity low byte] [Radius high byte] [Radius low byte]

Making the robot go forward at a speed of 200 mm/s translates into the following
Arduino function:

void goForward() {

//Serial sequence: [137] [Velocity high byte] [Velocity low byte] [Radius
//high byte] [Radius low byte]
 softSerial.write(137); // Opcode number for DRIVE

// Velocity (-500 – 500 mm/s)
 softSerial.write((byte)0); // 0x00c8 == 200
 softSerial.write((byte)200);
// Radius (-2000 – 2000 mm)
// Special case: straight = 32768 or 32767 = hex 8000 or 7FFF
 softSerial.write((byte)128); // hex 80
 softSerial.write((byte)0); // hex 00
}

	

Winkler, Arduino – iRobot Create workshop, p. 6

Integrated into a full Arduino sketch it looks like this:

(download: http://web.ics.purdue.edu/~fwinkler/AD61600_S14/goForward.zip)

Simple Robot Behavior: Bump and Run
This is one of the simplest behaviors for a mobile robot that still keeps it relatively
autonomous. The robot moves forward until it bumps into an obstacle, depending on
which bump sensor was triggered, the robot will drive backward a bit, then turn in the
opposite direction of the bump sensor that was triggered and continue to move forward.

#include <SoftwareSerial.h>

 // RX is digital pin 10
 // (connect to TX of other device - iRobot DB25 pin 2)
 // TX is digital pin 11
 // (connect to RX of other device - iRobot DB25 pin 1)
#define rxPin 10
#define txPin 11

// set up a new software serial port:
SoftwareSerial softSerial = SoftwareSerial(rxPin, txPin);

void setup() {
 delay(2000); // NEEDED!!!! To let the robot initialize

 // define pin modes for software tx, rx pins:
 pinMode(rxPin, INPUT);
 pinMode(txPin, OUTPUT);

 // set the data rate for the SoftwareSerial port, this is the
 // iRobot's default rate of 57600 baud:
 softSerial.begin(57600);

 softSerial.write(128); // This command starts the OI. You must
 // always send the Start command before
 // sending any other commands to the OI
 softSerial.write(131); // safe mode
}

void loop() {
 goForward();
}

 void goForward() {
 softSerial.write(137); // Opcode number for DRIVE
 // Velocity (-500 – 500 mm/s)
 softSerial.write((byte)0); // 0x00c8 == 200
 softSerial.write((byte)200);
 // Radius (-2000 – 2000 mm)
 // Special case: straight = 32768 or 32767 = hex 8000 or 7FFF
 softSerial.write((byte)128); // hex 80
 softSerial.write((byte)0); // hex 00
}

Winkler, Arduino – iRobot Create workshop, p. 7

Here is a function that returns the state of the bump sensors:

Now, can you write some code that implements the Bump and Run behavior? Check the
special cases in the Drive serial codes for stopping the motors and look up driving in a
radius (iRobot Create Open Interface manual, p.9).

void checkBumpSensors() {
 char sensorbytes[10]; // variable to hold the returned 10 bytes
 // from iRobot Create

 softSerial.write((byte)142); // get sensor packets
 softSerial.write((byte)1); // sensor group packet ID 1, size 10
 // bytes, contains packets: 7-16
 delay(64);

 // wipe old sensor data
 char i = 0;
 while (i < 10) {
 sensorbytes[i++] = 0;
 }
 i = 0;

 while(softSerial.available()) {
 int c = softSerial.read();
 sensorbytes[i++] = c;
 }

 bumpRight = sensorbytes[0] & 0x01;
 // if right bumper is triggered sensorbytes[0] is: 00000001
 // bitwise AND with 0x01, i.e. 00000001 equals 1
 // see: http://arduino.cc/en/Reference/BitwiseAnd
 bumpLeft = sensorbytes[0] & 0x02;
 // if left bumper is triggered sensorbytes[0] is: 00000010
 // bitwise AND with 0x02, i.e. 00000010 equals 2

 // So if the right bumper is triggered bumpRight is 1
 // (if not triggered then 0)
 // if the left bumper is triggered bumpLeft is 2
 // (if not triggered then 0)

 Serial.print(bumpRight);
 Serial.print(" ");
 Serial.println(bumpLeft);
}

Winkler, Arduino – iRobot Create workshop, p. 8

Hexadecimal, Decimal and Binary Number Representations
In order to better understand how to interpret numbers sent to and received from the
iRobot Create we need to look at the representation of numbers in different number
systems. The following diagram tries to compare three important number systems:

decimal hexadecimal binary
 27

(=128)
26

(=64)
25

(=32)
24

(=16)
23

(=8)
22

(=4)
21

(=2)
20

(=1)
0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 1
2 0 2 0 0 0 0 0 0 1 0
3 0 3 0 0 0 0 0 0 1 1
4 0 4 0 0 0 0 0 1 0 0
5 0 5 0 0 0 0 0 1 0 1
6 0 6 0 0 0 0 0 1 1 0
7 0 7 0 0 0 0 0 1 1 1
8 0 8 0 0 0 0 1 0 0 0
9 0 9 0 0 0 0 1 0 0 1
10 0 A 0 0 0 0 1 0 1 0
11 0 B 0 0 0 0 1 0 1 1
12 0 C 0 0 0 0 1 1 0 0
13 0 D 0 0 0 0 1 1 0 1
14 0 E 0 0 0 0 1 1 1 0
15 0 F 0 0 0 0 1 1 1 1
16 1 0 0 0 0 1 0 0 0 0
17 1 1 0 0 0 1 0 0 0 1
18 1 2 0 0 0 1 0 0 1 0

Hexadecimal numbers are convenient (but difficult to understand initially!) because they
can hold a 4 bit value (rather than sending or receiving 4 individual bits). A byte (8bits)
can be expressed using only 2 hexadecimal numbers.

This little online calculator can be helpful: http://www.mathsisfun.com/binary-decimal-
hexadecimal-converter.html (this one does not do negative numbers correctly for the
iRobot Create though!)

How to express negative decimal numbers in the hexadecimal system?
Suppose we want to find the hexadecimal representation of -53 (base 10). First, we
convert 53 to binary:

53 (base 10) = 110101 (base 2)

Next, we take the two's complement. We'll use 8-bit values, so we have to fill the
value to 8 bits by adding 2 leading zeroes on the left. Then invert the bits and add 1. We
then have:

 00110101 (positive value)
 |
 v
 11001010 (invert)
 + 1 (add 1)

 11001011 (two's complement negative result)

Winkler, Arduino – iRobot Create workshop, p. 9

This is how -53 is represented in two's complement signed binary. The
final step is to convert the binary to hexadecimal. We simply group
the bits into groups of four, then convert each group to its
hexadecimal equivalent, like so:

 1100 1011
 __/ __/
 12 11
 C B

So -53 (base 10) = CB (signed hexadecimal using complements).

 velocity -200:

200 in binary is 00000000 11001000 (we need to add 8 zeros to the left because we
need to send 2 bytes)

 two's complement:
 11001000

 00110111
 + 1

 00111000

 because:
 1
 +1

 10 (carry result to the next bit to the left)

 So, 00111000 (binary) = 56 (decimal)

Next steps:

• Monitoring iRobot Create’s behaviors (battery, distance travelled, turning angles,
etc.)

• Wireless serial communication with the Arduino on the iRobot Create using XBee.
• More fun with bits and bytes on the Arduino, merging 2 bytes into one decimal

number
• Working with timers on the Arduino (rather than the delay() function)

Further resources:

Helpful tutorials, project notes on controlling the iRobot Create via Arduino
http://projectsfromtech.blogspot.com/2013/11/irobot-create-arduino-control.html
http://www.netfluvia.org/layer8/?p=127

Roomba library for Arduino (not tested!)
http://www.airspayce.com/mikem/arduino/Roomba/

Winkler, Arduino – iRobot Create workshop, p. 10

Emitter Follower circuit to connect the iRobot Create to Serial0 or RX/TX on the Arduino
board: http://www.airspayce.com/mikem/arduino/Roomba/Create-Arduino.pdf

Kurt, Tod E. Hacking Roomba. Indianapolis, IN: Wiley,2007.

