Introduction

This chapter reviews recent findings on the neurolinguistics of speech prosody in tone languages of Southeast Asia. A few caveats are in order from the start. To investigate how language is processed in the human brain, one cannot rely on abstract theoretical models absent of time. The brain is driven by neurophysiology and, as such, our goal must be to focus on how linguistic elements, rules, and representations are implemented in the brain. Katz (1964) argued that “it is immaterial whether the mechanism inside the speaker’s head is in reality a... mechanical system of cardboard flip-flops and rubber bands, or... a group of homunculi industriously at work in a tiny office” (p. 129).

An opposing view emphasizes that the grammar consists of representations and computations that are executed in the brain in real time (Poeppel & Embick, 2006). The primary question for neurolinguistics is how computations and representations are implemented at the appropriate level of biological abstraction. This qualification is necessary because elements and operations are incommensurable between linguistics (e.g., tone, co-articulation) and neuroscience (e.g., neuron, synchronization) at any given level of analysis. With respect to lexical tones, this chapter shows that a complete understanding of the processing of linguistically relevant features of the auditory signal can only be achieved within a framework involving a series of computations that apply to representations at different stages of processing (Hickok & Poeppel, 2004).

In view of this theoretical perspective, the scope of this review is delimited to empirical data on the perception of lexical tones obtained from functional brain recording. The importance of behavioral data notwithstanding, earlier reviews are available on dichotic listening of lexical tones (Gandour, 2007) and tonal breakdown in production and perception consequent to damage of the cerebral cortex (Gandour, 1987; 1994, 1998a, 1998b, 2006b; Liang, 2008; Wong, 2002; Wong et al., 2009). Both sources of evidence point to the left hemisphere (LH) as dominant for language functions in native speakers of tone languages. Subcortical structures also play a significant role in the
production and comprehension of speech prosody (Van Lancker Siddis et al., 2006). Case studies of subcortical lesion deficits in Thai are available (Gandour & Dechongkit, 1992; Gandour & Ponglorpisit, 1990) as well as a neurobehavioral framework for assessing dysprosody in this clinical population (Siddis & Van Lancker Siddis, 2003).

From a theoretical perspective, we present evidence to show that simple dichotomies, either cognitive domains (e.g., language, music) or acoustic cues (e.g., temporal, spectral), are inadequate as the sole explanatory model for patterns of neural specialization at different levels of the brain (Zatorre & Gandour, 2008). Though the extant literature on the neurobiology of tonal processing in Southeast Asian languages is in its infancy, the evidence reviewed herein demonstrates that neural specializations are driven by both low-level acoustic features and higher-order, linguistic knowledge.

Speech perception is important because it provides multiple windows along the auditory pathway into the cerebral cortex on how continuous, acoustic signals are transformed into representations upon which computations are based at different levels of the brain. Pitch is one of the most important information-bearing components of speech. Tone languages offer advantages for investigating neural mechanisms underlying pitch at different levels of processing because of its phonemic status at the word level (Yip, 2002). We will focus on lexical tones in Thai (Tingsabadh & Abramson, 1999), Cantonese (Zee, 1999), and Mandarin (Howie, 1976). Voice fundamental frequency (f_0) contours provide the dominant cue for tone recognition (Gandour, 1994).

Functional brain recording

Hemodynamic

Recent advances in functional neuroimaging have now made it possible to observe in vivo how changes in behavioral and cognitive task demands lead to changes in neural activity in the human brain (Rugg, 1999). Two methods, positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), respectively, measure changes in brain activity as reflected by properties of blood flow. Though poor in temporal resolution, both methods provide high spatial resolution that enables us to map areas at the level of gyri and sulci in the brain.

Though perception of non-linguistic pitch is associated with activation in the inferior parietal lobule (hums) conditions (Gandour, 2000; cf. Gandour, Wong, & Hutchins, 1998), native Thais, but neither Chinese nor English, showed LH activation in the inferior frontal gyrus (IFG) for both 'hexagram' and 'monetary unit' stimuli. Neural bases of tonal pitch and timing patterns in non-linguistic contexts (hums) conditions (Gandour, 2000; cf. Gandour, Wong, & Hutchins, 1998), native Thais, but neither Chinese nor English, showed LH activation in the inferior frontal gyrus (IFG) for both 'hexagram' and 'monetary unit' stimuli.
Neural bases of lexical tones

Sidtis et al., 1990, are available in the clinical population as well as in normal subjects for linguistic tone perception. These results suggest that simple acoustic cues are sufficient to activate a auditory model for the perception of tonal languages. The evidence for tonal language processing is driven by both neural and behavioral evidence.

Simple windows are available in continuous, real-time computation of the most important auditory cues. The languages offer a rich tapestry of tone contrasts at different pitch levels (Yip, 1994; Abramson, 2004; Voice, 2006). Thus, it is possible to ask whether the demands lead to specific neural responses. Two methods, which allow for separate processing of the segments' tonal properties and the tonal properties of the non-tonal units, were used. In a phonological recognition task, Mandarin tones, relative to either consonants or rhymes, show increased activation in frontal-parietal areas of the RH (Li et al., 2010). This rightward asymmetry of tone converges with the role of the RH in mediating speech prosody (Friederici & Alter, 2004; Glasser & Rilling, 2008; Wildgruber et al., 2006). See further discussion of bilateral involvement in sentence-level prosody in tone language speakers (Gandour, 2006a, 2007;
Mandarin Tone Discrimination

Mandarin-Speaking Subjects English-Speaking Subjects

Figure 32.1. Position emission tomography (PET) images show increased activity in the left anterior insular cortex when Chinese natives discriminate pitch patterns embedded in Mandarin words (top panel), but in the homologous area of the RH for those embedded in English words (bottom panel). In contrast, English speakers' activity is circumscribed to the RH regardless of lexical function. (Adapted from *Journal of Neuroscience*, 24(41), 2004, 9157, with permission from Society of Neuroscience.)

English Pitch Discrimination

Mandarin-Speaking Subjects English-Speaking Subjects

Zatorre & Gandour, 2008

(Wang, Jongman, & Seri, 2004; Meyer et al., 2004) have implicated the STS in the initial stages of auditory processing (STS) and middle cerebral cortex in the intermediate stages of phonological processing (Hickok, 2004). In contrast, the dorsal STG has been implicated in the intermediate stage of processing, and the bilateral dorsal STG has been implicated in the intermediate stage of processing.
Zatorre & Gandour, 2008) and in second-language learning of Mandarin tones (Wang, Jongman, & Sereno, 2006).

Superior regions of the temporal lobe are known to be responsible for initial stages of auditory analysis, whereas the superior temporal sulcus (STS) and middle temporal gyrus (MTG) have been implicated in phonological processing (Hickok & Poeppel, 2004, 2007). To assess interaction between core auditory and ventral regions concurrently, Zhang et al. (2011) created an acoustic continuum with 11 equal physical intervals ranging from the Mandarin high rising to falling tone. Using a passive oddball paradigm (frequent-standard/rare-deviant), brain areas activated by acoustic variation within tonal categories were located in the dorsal and posterior-lateral STG bilaterally, with the strongest activation in the right middle STG (Figure 32.2). In contrast, brain areas activated by phonological variation across tonal categories, as compared to within-category acoustic variation, were located in the left middle MTG. These areas in the temporal lobe have been implicated in the processing of tone and intonation (Gandour et al., 2004; Meyer et al., 2004). The left middle/anterior STS may represent an intermediate stage of processing in a functional pathway linking areas in the bilateral dorsal STG to areas in the left MTG that are engaged in higher-level phonological processing (Liebenthal et al., 2005, 2010).

Figure 32.2. Activation in within-category deviant vs. across-category deviant contrasts elicited from a tonal continuum ranging from the Mandarin high rising to falling tone. Regions of activity are shown for within-category > across-category (panel A, STG; panel B, right STG) and across-category > within-category deviants (panel A, MTG; panel B, left MTG). STG, superior temporal gyrus; MTG, middle temporal gyrus. (Adapted from PLoS One, 6(6), 2011, e20963.)
Electrophysiological

In contrast to hemodynamic methods, electrophysiological recordings yield high temporal (poor spatial) resolution that give us a window on the time-course of events or processes in the brain (Rugg, 1999). The mismatch negativity (MMN) response, elicited using an auditory passive oddball paradigm, is an event-related potential (ERP) with a frontal-central distribution about 150–300 ms after stimulus onset. Language experience, as reflected by the MMN, influences the automatic, preattentive discrimination of speech sounds (Naatanen, 2001).

There are data to support an acoustic basis for hemispheric specialization of pitch at early cortical stages of processing (Poeppel, 2003; Zatorre & Belin, 2001). Lexical tones elicit a stronger MMN response from native speakers of Mandarin in the RH than in the LH, whereas consonants evoke the opposite asymmetry (Luo et al., 2006). Consonants and tones are characterized by rapidly changing temporal and slowly changing spectral variation, respectively. Such hemispheric asymmetries suggest that early cortical processing of linguistic pitch is driven primarily by acoustic features before being mapped onto a semantic representation at later stages. MMNs also yield RH dominance across levels of prosodic representation (tone, intonation) in Mandarin regardless of whether segmental information is preserved in the stimuli (speech, non-speech) (Ren, Yang, & Li, 2009). The influence of phonemic status on the perception of Mandarin tones shows that acoustic and phonological information may be processed concurrently within the MMN time window (Xi et al., 2010). Across-category deviants elicited larger MMNs relative to within-category deviants in the LH, probably reflecting more cognitive memory-based comparator processing (cf. Maess et al., 2007). Both within- and across-category deviants elicited marginally larger MMNs in the RH, presumably reflecting its role in sensory processing.

There are no veridical ERP studies of tone perception in Thai to date. Using native (Thai) and non-native (Mandarin) words presented to Thai listeners (Sittiprapaporn et al., 2003), the MMN elicited by a native Thai word was greater than that of a non-native Mandarin word, and lateralized to the LH. But we cannot disentangle effects of word recognition from tone perception. In a study of the perception of Thai tones (Kaan et al., 2007), contrary to expectation, no significant differences in amplitude or latency were observed among native Thai, Mandarin, and English speakers. But their findings actually reveal the influence of preceding consonants on pitch (Gandour, 1974). There is no language-group effect because consonantal perturbations on pitch are found in all languages of the world.

Yet it has been demonstrated that the MMN may serve as an index of acoustic features that are differentially weighted by language experience.
readings yield on the time−
mismatch oddball paradigm; the distribution reflected by speech
realization of Mandarin speakers of the opposite character.
ized by RH dominance in Mandarin listeners, the stimuli of phonemic and phonological MMN time were larger (Belin, 2007a). Both MMNs in the
date. Using Thai listeners for a Thai word was assigned to the LH, to speech perception. Contrary to to both Chinese and Mandarin (Zheng et al., 2012). The P300, an index of task demands (Polich, 2007), is an involuntary attention-switching response elicited in an active oddball paradigm with a parietal distribution about 300 ms after stimulus onset. As reflected by P300 amplitude, Cantonese listeners discriminated the tonal stimuli better than Mandarin. Zheng et al. hypothesize that Cantonese listeners make finer distinctions in f_0 height and slope because of differences in tonal inventories (Peng, 2006). The Cantonese tonal space (six tones) is denser than that of Mandarin (four tones).

While speech-specific operations are likely circumscribed to the cortex (Scott & Johnsrude, 2003), the auditory signal may be subject to language-dependent
effects at subcortical stages of processing. We argue that the emergence of acoustic–phonetic features relevant to tone perception begins no later than 15–18 ms from the time the auditory signal enters the ear (Krishnan & Gandour, 2009). The human frequency-following response (FFR) is used to measure pitch-related electrophysiological activity in the brainstem. This response reflects sustained phase-locked activity in a population of neural elements within the brainstem (Krishnan, 2007), and is characterized by a periodic waveform that follows the individual cycles of the stimulus waveform. As reflected by FFRs, comparisons between native speakers of tone (Mandarin) and non-tone (English) languages show that native experience with lexical tones enhances pitch encoding at the level of the brainstem irrespective of speech or non-speech context (Krishnan et al., 2005, 2009; Swaminathan, Krishnan, & Gandour, 2008). Pitch strength (magnitude of the normalized autocorrelation peak) of 40-ms segments revealed that the Chinese group exhibits more robust pitch representation of those segments containing rapidly changing pitch movements across all four tones (Krishnan, Swaminathan, & Gandour, 2009). Long-term experience is believed to sharpen the tuning characteristics of the best modulation frequency neurons along the pitch axis with particular sensitivity to linguistically relevant dynamic segments. Pitch strength of the rising f_0 trajectory (Figure 32.4) is the most important in discriminating listeners by language affiliation (Krishnan et al., 2005). Pitch features of high degraded listening context (Bidelman, 2010a). This is at increasingly higher accuracy at increasing language dependency especially sensitive to natural speech. We found how close a linearly abstracted lexical tone (Krishnan et al., 2005). A curvilinear pattern is an extraction of the auditory system that shows the importance of pitch features of high degraded listening context (Bidelman, 2010a). This is at increasingly higher accuracy at increasing language dependency especially sensitive to natural speech. We found how close a linearly abstracted lexical tone (Krishnan et al., 2005). A curvilinear pattern is an extraction of the auditory system that shows the importance of language affiliation (Krishnan et al., 2005). Pitch features of high degraded listening context (Bidelman, 2010a).
The emergence of no later than 500 ms after the onset of stimuli that differ in early rising pitch, which is contrasted with stimuli that are late, demonstrates the robustness of pitch features that are perceptually salient, such as those found in Mandarin listeners (Krishnan, Gandour, & Bidelman, 2010a). These dynamic pitch features are more resistant to degraded listening conditions in Mandarin listeners than in English speakers (Krishnan, Gandour, & Bidelman, 2010b). This advantage in voice pitch encoding is maintained even at increasingly higher acceleration rates that fall outside the natural boundary of the brainstem's neuroplasticity for pitch processing (Krishnan et al., 2010), demonstrating that neuroplasticity is not limited to the domain in which pitch contours are behaviorally relevant.

Language-dependent pitch encoding mechanisms in the brainstem are especially sensitive to the curvilinear shape of pitch contours that occur in natural speech. We fail to observe any language-dependent effects no matter how close a linearly accelerating or decelerating pitch pattern approximates a native lexical tone (Krishnan et al., 2009; Xu, Krishnan, & Gandour, 2006). A curvilinear pattern itself, though necessary, is insufficient to enhance pitch extraction of the auditory signal at the level of the brainstem. A non-native curvilinear pitch pattern similarly fails to elicit a language-dependent effect (Krishnan et al., 2009).

Figure 32.4. Discriminant analysis of pitch strength indicates that moderate rising pitch is important for distinguishing tone language from non-tone language speakers. (Adapted from Journal of Neurolinguistics, 23(1), 2010, 89, with permission from Elsevier Press.)
The question arises whether the neural encoding of pitch in the brainstem is specific to a particular language. In a cross-language comparison (Mandarin, Thai), language-dependent enhancement of pitch representation was demonstrated to transfer to other languages with similar prosodic systems (Krishnan, Gandour, & Bidelman, 2010b). Another related question has to do with transfer between separate domains – language and music. FFRs show that neural enhancement of pitch encoding is enhanced in musicians as compared to Chinese or non-musicians in the rapidly changing portion of Mandarin tone 2 (high rising) corresponding to the note B♭ of a discrete musical scale. (Adapted from Journal of Cognitive Neuroscience, 23(2), 2011, 431, with permission from MIT Press.)

Musical pitch

![Musical pitch diagram]

F0 Frequency (Hz)

Figure 32.5. Comparisons of spectral f0 magnitudes reveal that pitch encoding is enhanced in musicians as compared to Chinese or non-musicians in the rapidly changing portion of Mandarin tone 2 (high rising) corresponding to the note B♭ of a discrete musical scale. (Adapted from Journal of Cognitive Neuroscience, 23(2), 2011, 431, with permission from MIT Press.)

Conclusion

music training facilitates pitch processing of Mandarin tones (cf. MMN: Chandrasekaran, Krishnan, & Gandour, 2009; Wong et al., 2007). FFRs also show that tone language experience facilitates music processing. Chinese FFRs were stronger than those of English-speaking non-musicians in response to a musical pitch interval (Bidelman, Gandour, & Krishnan, 2011). Surprisingly, English-speaking musicians’ FFRs were even superior to those of Chinese in just those subparts of a lexical tone that can be related to perceptually salient notes along the musical scale (Figure 32.5). These findings suggest that experience-dependent plasticity of brainstem responses is shaped by the relative saliency of acoustic dimensions underlying the pitch patterns associated with a particular domain.

Conclusions

Tonal languages provide an especially valuable window for tracing the transformation of the pitch signal from early preattentive sensory to later attention-modulated tasks at cognitive stages of processing in the human brain. Instead of simple dichotomies, hemispheric laterality of pitch is seen to be driven by multiple dichotomies or scalar features that may apply at different real-time intervals at cortical or subcortical levels of the brain. A more complete account of tonal processing will require that we understand the interplay between general sensory-motor and cognitive processes in addition to those derived from linguistic knowledge. Experience-dependent effects on lower-level sensory processing are compatible with an integrated, hierarchically organized auditory pathway to the brain. In the case of tonal processing, general-purpose auditory processes are tuned differentially to perceptually salient features of the auditory signal depending upon their linguistic status. From the perspective of auditory neuroethology, enhancements in brainstem neural activity relevant to encoding of voice pitch is comparable to neural mechanisms that are developed for processing behaviorally relevant sounds in other non-primate and non-human primate animals (Suga et al., 2003).

Acknowledgments

Research supported by the National Institutes of Health R01 DC008549–01A1 (A.K.). Reprint requests should be addressed to Jackson Gandour, Department of Speech Language Hearing Sciences, Purdue University, West Lafayette, IN, USA 47907 (email: gandour@purdue.edu).