Spring, 2022 ME 597 – Solid Mechanics II

Lecture 1 – Class Overview

Mechanical Engineering Instructor: Prof. Marcial Gonzalez

Last modified: 1/10/22 3:51:16 PM

Instructor:

- Professor Marcial Gonzalez
- e-mail: marcial-gonzalez@purdue.edu
- Office hours by appointment: ME 3061M

Lectures:

- Tuesday and Thursday: 9 a.m. to 10:15 a.m.
- Room: MSEE B010

Class website:

- purdue.brightspace.com

Classroom guidance – Protect Purdue:

- The Protect Purdue Plan, which includes the Protect Purdue Pledge, is campus policy and as such all members of the Purdue community must comply with the required health and safety guidelines.
- Required behaviors in this class include:
 - + staying home and contacting the Protect Purdue Health Center (496-INFO) if you feel ill or know you have been exposed to the virus,
 - + wearing a mask in classrooms and campus building, at all times,
 - + disinfecting desk/workspace prior to and after use,
 - + maintaining proper social distancing with peers and instructors,
 - + maintaining robust hygiene prior to, during and after class, and
 - + following all safety directions from the instructor.
- Students who are not engaging in these behaviors (e.g., wearing a mask) will be offered the opportunity to comply. If non-compliance continues, possible results include instructors asking the student to leave class and instructors dismissing the whole class. Students who do not comply with the required health behaviors are violating the University Code of Conduct and could be dismissed from the university.

In the event a student is quarantined/isolated:

- If you become quarantined or isolated at any point in time during the semester, in addition to support from the Protect Purdue Health Center, you will also have access to an Academic Case Manager who can provide you academic support during this time.
- Your Academic Case Manager can be reached at acmq@purdue.edu and will provide you with general guidelines/resources around communicating with your instructor, be available for academic support, and offer suggestions for how to be successful when learning remotely.
- If you find yourself too sick to progress in the course, notify your academic case manager and notify me via email. They will make arrangements based on your particular situation.

The Office of the Dean of Students (odos@purdue.edu) is also available to support you should this situation occur.

Emergency preparedness:

- To report an emergency, call 911. To obtain updates regarding an ongoing emergency, sign up for Purdue Alert text messages, www.purdue.edu/ea
- There are nearly 300 Emergency Telephones outdoors across campus and in parking garages that connect directly to the PUPD. If you feel threatened or need help, push the button and you will be connected immediately.
- If we hear a **fire alarm** during class we will immediately suspend class, evacuate the building, and proceed outdoors. Do not use the elevator.
- If we are notified during class of a **Shelter in Place requirement for a tornado** warning, we will suspend class and shelter as indicated--take a look after class.
- If we are notified during class of a Shelter in Place requirement for a hazardous materials release, or a civil disturbance, including a shooting or other use of weapons, we will suspend class and shelter in the classroom, shutting the door and turning off the lights.
- Please review the Emergency Preparedness website for additional information. www.purdue.edu/ehps/emergency_preparedness/index.html

Homework:

- Biweekly homework sets.
- Posted online every other Friday by 5 p.m. or earlier.
- Due to every other Friday by 5 p.m.
- Submitted online through Gradescope.
- You can discuss homework problems with others, including me, but the work has to be an <u>individual</u> work.
- Late homework won't be accepted.
 In case of illness or conference travel, arrange extensions with me in advance.

Academic integrity:

- Purdue 'Statement of Integrity and Code of Conduct': www.purdue.edu/purdue/about/integrity_statement.html
- Please take the time to read it carefully and talk with me if you have any questions.

Exams:

- One in-class midterm exam, March 31st, closed book, closed notes.
- No final exam.

Project:

- Research oriented.
- You will be evaluated based on your weekly progress, a final presentation and a final written report.
- Details will be given during the semester.

Grading:

- Homework (30%), midterm exam (40%), final project (30%)
 Note: 5 HWs, 6 pts. each.
- Grades are not curved.
 - 97-100% A+; 93-97% A; 90-93% A-; 87-90% B+; 83-87% B; 80-83% B-; 77-80% C+; 73-77% C; 70-73% C-; 67-70% D+; 63-67% D; 60-63% D-;

- Tensor algebra and tensor analysis
- Kinematics of deformations
- Mechanical conservation and balance laws
- Thermodynamics
- Constitutive relations
- Hyperelastic solids
- Viscoelastic solids
- Plasticity
- Structural elements (beams, plates, shells)
- Solid-solid interactions (contact mechanics) and fluid-solid interactions

Suggested reading

Let me know if you want to leaf through a book before buying it

- Tadmor E.B., Miller R.E., Elliot R.S., "Continuum Mechanics and → Thermodynamics", Cambridge University Press, 2012.
- Holzapfel G.A., "Nonlinear Solid Mechanics", Wiley, 2000.
- Lubliner J., "Plasticity Theory", Dover Reprint, 1990. (link)
- Johnson K.L., "Contact Mechanics", Cambridge University Press, 2012. (link)
- Simo J.C. and Hughes T.J.R., "Computational Inelasticity", Springer, 1998. (link)

These books are

available at the

Engineering Library

CM as a 'grand unifying theory' of engineering science

CM as a 'contextual framework' for current research

Content and structure of the lectures

Before class:

- Lecture slides will be posted online on *Brightspace*.

During class:

- Bring a printout of the slides with you.
- Lecture notes are not self-explanatory.
- We will work out some problems and derivations together ...

DIY "Do It Yourself"

.... 'we will work out the solutions and derivations together'

- Most importantly: Actively participate in class!

Goal:

- Facilitate a deeper understanding of the course material.
- Give you feedback on your learning and help prepare you for the exam.
- Give *me* feedback on your learning and help *me* better prepare you for the exam.
 Another good reason for enforcing individual work on homework assignments.

Structure:

- A mix of theoretical (proof-based problems) and practical problems (algebra-based problems).
- Provide reasoning and justification for each step in your solution (regardless the type of problem).

You will be graded on the quality of these steps.

- Advice: start working on the homework set as soon as it is posted!

Tentative schedule

Tuesday	Thursday	HW
(9 to 10:15 a.m., MSEE B010)	(9 to 10:15 a.m., MSEE B010)	(Friday, 5 p.m., Gradescope)
01/11 - (01) Class overview	01/13 - (02) Introduction to vectors and tensors	-
01/18 - (03) Kinematics of deformations	01/20 - (04) Kinematics of deformations	HW1 posted
01/25 - (05) Conservation and balance laws	01/27 - (06) Thermodynamics and constitutive relations	-
02/01 - (07) Constitutive relations Coleman-Noll proc.	02/03 - (08) Hyperelastic solids	HW1 due - HW2 posted
02/08 - (09) Hyperelastic solids	02/10 - (10) Viscoelastic solids	-
02/15 - (11) Viscoelastic solids	02/17 - (12) Viscoelastic solids Internal variables	HW2 due - HW3 posted
02/22 - (13) Plasticity	02/24 - (14) Plasticity J2 or von Mises	-
03/01 - (15) Plasticity Mohr-Coulomb, Drucker-Prager	03/03 - (16) Solid-solid interactions Contact mechanics	HW3 due - HW4 posted
03/08 - (17) Solid-solid interactions Contact mechanics	03/10 - (18) Solid-solid interactions Contact mechanics	-
SPRING VACATION	SPRING VACATION	HW4 due
03/22 - (19) Structural elements Beams, plates, shells	03/24 - (20) Midterm Prep	
03/29 - (21) Guidelines for special project	03/31 - EXAM Time/Room (TBD)	-
04/05 - Project progress report #1a (presentation)	04/07 - Project progress report #1b (presentation)	Project progress report via WebEx
04/12 - (22) Structural elements Beams, plates, shells	04/14 - Project progress report #1c (presentation)	HW5 posted
04/19 - (23) Fluid-solid interactions	04/21 - Project progress report #2a (presentation)	Project progress report via WebEx
04/26 - Project progress report #2b (presentation)	04/28 - Project progress report #2c (presentation)	HW5 due
Week of 05/02 - Time (TBD): Final project report and video submission		

Know your history genealogy

Know your history genealogy

You

Know your history genealogy

Any questions?