Spring, 2022

Lecture 4
 Kinematics of deformations

KEEP A MASK WITH

YOU ATC ALL TIMMES
\equiv PRATECT

Mechanical Engineering Instructor: Prof. Marcial Gonzalez

Lecture 4 - Kinematics of deformations

Kinematics of deformation

Review

- The deformed configuration is described in terms of the deformation mapping $\varphi(X, t)$
- Description of local deformation:
+ Deformation gradient (non symmetric, two-point tensor)

$$
F_{i J}=\frac{\partial x_{i}}{\partial X_{J}} \quad d \boldsymbol{x}=\left.\boldsymbol{F}\right|_{(\boldsymbol{X}, t)} d \boldsymbol{X}
$$

+ Right Cauchy-Green deformation tensor (symmetric, positive-definite, material tensor)

$$
C_{I J}=F_{k I} F_{k J} \Longleftrightarrow \boldsymbol{C}=\boldsymbol{F}^{T} \boldsymbol{F} \quad d s^{2}=\boldsymbol{M} \cdot \boldsymbol{C} \boldsymbol{M} d S^{2}
$$

+ Left Cauchy-Green deformation tensor (symmetric, positive-definite, spatial tensor)

$$
B_{i j}=F_{i K} F_{j K} \Longleftrightarrow \boldsymbol{B}=\boldsymbol{F} \boldsymbol{F}^{T}
$$

Kinematics of deformation

Review

- The deformed configuration is described in terms of the deformation mapping $\varphi(X, t)$
- Description of local deformation:
+ Right and left polar decomposition of the deformation gradient

$$
F_{i J}=R_{i I} U_{I J}=V_{i j} R_{j J} \Longleftrightarrow \boldsymbol{F}=\boldsymbol{R} \boldsymbol{U}=\boldsymbol{V} \boldsymbol{R}
$$

. Proper orthogonal rotation: \boldsymbol{R} (two point tensor)
. Right stretch tensor: \boldsymbol{U} (symmetric, positive-definite, material tensor)
. Left stretch tensor:
\boldsymbol{V} (symmetric, positive-definite, spatial tensor)

Kinematics of deformation

Review

- The deformed configuration is described in terms of the deformation mapping $\varphi(X, t)$
- Description of local deformation:
+ Lagrangian strain tensor (symmetric, positive-definite, material tensor)

$$
\begin{aligned}
& E_{I J}=\frac{1}{2}\left(C_{I J}-\delta_{I J}\right) \Longleftrightarrow \boldsymbol{E}=\frac{1}{2}(\boldsymbol{C}-\boldsymbol{I}) \\
& \\
& d s^{2}-d S^{2}=\boldsymbol{M} \cdot(\boldsymbol{C}-\boldsymbol{I}) \boldsymbol{M} d S^{2}
\end{aligned}
$$

Kinematics of deformation

Deformation measures

- Change in squared length of an infinitesimal vector

$$
\begin{gathered}
d s^{2}-d S^{2}=\boldsymbol{M} \cdot(\boldsymbol{C}-\boldsymbol{I}) \boldsymbol{M} d S^{2} \\
E_{I J}=\frac{1}{2}\left(C_{I J}-\delta_{I J}\right) \Longleftrightarrow \boldsymbol{E}=\frac{1}{2}(\boldsymbol{C}-\boldsymbol{I})=\frac{1}{2}\left(\boldsymbol{F}^{T} \boldsymbol{F}-\boldsymbol{I}\right)
\end{gathered}
$$

Lagrangian strain tensor
(symmetric, positive-definite, second-order material tensor)

Deformation gradient

Deformation gradient

- Example: elongation and rotation

Deformation gradient

Deformation gradient

- Example: use cylindrical coordinates to write the deformation mapping in Cartesian coordinates, and use the deformation gradient to enforce incompressibility

Deformation gradient

Deformation gradient

- Example: use cylindrical coordinates to write the deformation mapping in Cartesian coordinates, and use the deformation gradient to enforce incompressibility

Deformation gradient

Deformation gradient

- Example: deformation and rotation

Deformation gradient

Deformation gradient

- Example: deformation - changes in density?

Linearized kinematics

Linearized kinematics

- Linearized or incremental expressions for the kinematic quantities are required when:
(i) the deformation process is described as a series of small steps

$$
x=\varphi(X) \rightarrow \varphi(X)+u(X)
$$

(ii) displacements are indeed small

$$
\boldsymbol{X} \rightarrow \boldsymbol{X}+\boldsymbol{u}(\boldsymbol{X})
$$

- We define the variation of \square in the direction of the vector field $\boldsymbol{u}(\boldsymbol{X})$

Linearized kinematics

Linear parts of kinematic fields

- Examples: Right Cauchy-Green deformation tensor
(i) the deformation process is described as a series of small steps

$$
\boldsymbol{x}=\varphi(X) \rightarrow \varphi(X)+u(X)
$$

(ii) displacements are indeed small

$$
\boldsymbol{X} \rightarrow \boldsymbol{X}+\boldsymbol{u}(\boldsymbol{X}) \quad \boldsymbol{F}=\boldsymbol{I}, \nabla_{0} \boldsymbol{u}=\nabla \boldsymbol{u}
$$

Linearized kinematics

Linear parts of kinematic fields

- Examples (for $x=\varphi(X) \rightarrow \varphi(X)+u(X))$:

$$
\left\langle\nabla_{\varphi} \boldsymbol{F} ; \boldsymbol{u}\right\rangle=\left.\frac{d}{d \eta}\left[\frac{\partial}{\partial X_{J}}\left(\varphi_{i}+\eta u_{i}\right)\right]\right|_{\eta=0} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{J}=\nabla_{0} \boldsymbol{u}
$$

$$
\left\langle\nabla_{\varphi} \boldsymbol{E} ; \boldsymbol{u}\right\rangle=\frac{1}{2}\left[\boldsymbol{F}^{T} \nabla_{0} \boldsymbol{u}+\left(\boldsymbol{F}^{T} \nabla_{0} \boldsymbol{u}\right)^{T}\right] \quad \text { linearized quantities }
$$ used in computational

$$
\left\langle\nabla_{\varphi} J ; \boldsymbol{u}\right\rangle=\frac{\partial \operatorname{det} \boldsymbol{F}}{\partial \boldsymbol{F}}: \nabla_{0} \boldsymbol{u}=J \operatorname{tr}\left(\left(\nabla_{0} \boldsymbol{u}\right) \boldsymbol{F}^{-1}\right)
$$

mechanics

Linearized kinematics

Linear parts of kinematic fields

- Examples (for $\boldsymbol{X} \rightarrow \boldsymbol{X}+\boldsymbol{u}(\boldsymbol{X})$, i.e., $\left.\boldsymbol{F}=\boldsymbol{I}, \nabla_{0} \boldsymbol{u}=\nabla \boldsymbol{u}\right)$: [the linearization is evaluated in the undeformed configuration]

$$
\left\langle\nabla_{\varphi} \boldsymbol{E} ; \boldsymbol{u}\right\rangle=\frac{1}{2}\left[\boldsymbol{F}^{T} \nabla_{0} \boldsymbol{u}+\left(\boldsymbol{F}^{T} \nabla_{0} \boldsymbol{u}\right)^{T}\right]=\frac{1}{2}\left[\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right]=\boldsymbol{\epsilon}
$$

$$
\left\langle\nabla_{\varphi} J ; \boldsymbol{u}\right\rangle=J \operatorname{tr}\left(\left(\nabla_{0} \boldsymbol{u}\right) \boldsymbol{F}^{-1}\right)=\operatorname{tr} \nabla \boldsymbol{u}=\operatorname{tr} \boldsymbol{\epsilon}
$$

Lecture 4 - Kinematics of deformations

Any questions?

