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Lecture 8 — Constitutive relations
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KINEMATICS OF DEFORMATIONS

x = p(X,t)
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laws of nature .
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Laws of nature

Summary
Jp = po
dive + pb = pa
c=0

pu = o :d—+ pr —divg
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reference
configuration BO

CONTINUOUS

VX € By conservation of mass (1 equation)
Vx € B balance of linear momentum (3 gquations)
VY € B balance of angular momentum (constraint)
Vx € B conservation of energy (1 equation)
vz ¢ B Clausius-Duhem inequality (constraint)

p, T, 0,q,u, s, T (16 unknowns)

deformed
configuration

pdV



Constitutive relations

Constitutive relations

- Relations that describe the response of the material to mechanical and

thermal loading, e.g.,
& €8 o, q, W, s (11 constitutive equations)

- Can these constitutive relations be selected arbitrarily? NO!

They must follow fundamental principles:

+ Principle of determinism

+ Principle of local action

+ Second law of thermodynamics restrictions (Clausius-Duhem inequality)
+ Principle of material frame indifference (objectivity)

+ Material symmetry

CONTINUOUS

deformed
configuration
reference pdV
configuration Bo {e I} r



Hyperelastic solids - Isotropic

Coleman-Noll procedure + Frame indifference + Isotropy

W =W (I, I, I3) strain energy density function
(a function of the principal invariants
I =tr(C) = tr(B) of the right/left Cauchy-Green tensor)

Iy = %[tr((}’)2 —tr(C?)] = %[tr(B)2 — tr(B?)]

I3 = det(C) = det(B) = J? - —@

ol&) — 2 powW(C.T) pT elastic part of the stress tensor
J oC . .

. (the viscous part is zero

S(e) _ 99w ég,T) and thus, the process is reversible)

By
deformed
configuration

CONTINUOUS

reference
configuration BO {e I}



Hyperelastic solids - Isotropic

Coleman-Noll procedure + Frame indifference + Isotropy

W =W (I,1,13) o=oc®
|
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Hyperelastic solids - Isotropic

Incompressible hyperelastic materials

— Biomaterials such as biological soft tissues and solid polymers such
as rubber-like materials undergo reversible finite strains.

— Vulcanized rubber undergoes very small volume changes at very high
hydrostatic pressures. It is very much easier to change its shape than
to change its volume. Rubber is often regarded as incompressible.

W =W (I, I5) subject to Is = J? =1

| i Functional materials |
Technical ceramics ! ' ;
1000+

i ‘ i | Functional materials
Metals aIon§ Man-made fibers 1 )

echnical ceramics

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
© ©
[ T R T B B e e e O o A e ——— ) /i
] ]
1] 2]
2 2
S it @D o = S 1L S AE T A S\
K Non-technical ceramics K
£ E
1 [
= T T e R s o B e = T S i e AR R S—
[ ! < =
3 =]
s s
001 . | L a L bt [ st H e o e

£ 1 10 160 10‘00 -DvIOS 6 0.l')5 0.‘1 0.;5 D.‘2 055 0‘3 0.55 074 0.55 Dv'S 0. '55 0.‘6
o Elongation (% strain) Poisson's ratio



Hyperelastic solids - Isotropic

Compressible hyperelastic materials

— Foamed rubbers undergo reversible finite strain but cannot be
regarded as being incompressible.

W =W (I, I, I3)
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Hyperelastic solids - Isotropic

Incompressible hyperelastic materials

W (I, 1) = c1(I1 — 3) + c2(I2 — 3) Moony-Rivlin materials

Note: incompressibility is an internal constraint (or kinematic I. =1
constraint) of the material 3

Question: how is the pressure determined? The undetermined part of the pressure is
introduced as a Lagrange multiplier and it is determined from boundary conditions

W(Il,IQ) = 01(11 — 3) + 62(12 — 3) - C()(Ig — 1)

v o =2[Wy, +LWp,)B—W,,B?] —cl

e e e e e e e e e e e e e e

Limit of infinitesimal deformations: pw=2(c1+c) E=6(cs+ co)

\ shear modulus Young’s modulus
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Hyperelastic solids - Isotropic

Incompressible hyperelastic materials

W(l,Is) = c1(I1 — 3) neo-Hookean materials

Note: incompressibility is an internal constraint (or kinematic I = 1
constraint) of the material 3

Note: the neo-Hookean model is a special case of the Moony-Rivlin model

p=—tro/3=cy—2c111/3

e e e e e e e e e e e e e e
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Hyperelastic solids - Isotropic

Almost incompressible hyperelastic materials

Vol 72
W(C):WD(C)+WH(]3) Is =J 7é 1
deviatoric  hydrostatic 6 _ J_2/3C volume preserving
N or isochoric part
Iy = y
e ©
‘ Example: Moony-Rivlin model extended to the compressible materials
I _ _ _ I
| W (I, 1z, I3) = c1 (I} — 3) + c2(I2 — 3) + W (I3) |
| with 1/2 |
I WH(IS) = Dy (]3 — 1)2 It is not a Lagrange multiplier I
1 but rather a penalization term 1
I that will generate ‘almost’ I
: incompressible deformation :
I mappings I
| |
| |
| |
| |
| Limit of infinitesimal deformations: = 2(01 + 62) K =2/D; I
'\ shear modulus bulk modulus /'
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Hyperelastic solids - Isotropic

Compressible hyperelastic materials

Note: What is the dependency of the resulting pressure?
Does it depend only on the Jacobian of the deformation mapping? NO!
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Hyperelastic solids - Isotropic

Isotropic hyperelastic materials — Another take ...

P T mm mm mm mm mm o = = =y

Frame indifference

— —~—

%4 ZW(F,T) =W (U, T)=W (C,T) A function of the
) . . right Cauchy-Green tensor
Material symmetry: isotropic and

W = W (F T) _ /W (V T) _ /W (B T) left Cauchy-Green tensor
Strain energy density function: W =W ()\1, A2, )\3)

The right and left stretch tensors have the same principal stretches (eigenvalues). @
Principal directions (eigenvectors). :
AC =AY =N, a={1,23)} |[No|=1 :
UN, = N, o=1{1,23) :
CN,=XN, o=1{1,223} :
|
Do =N, ®N, o={1,23}
]

- e o o o o e o O O O S S B B S S e S S S e e S e e e e e e e e e e e e e e
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Hyperelastic solids - Isotropic

Incompressible hyperelastic materials

— e o Ee S S S B EEE BEe B B e e S Sy,

”

W (AL, Ao, Ag) = SO0 £2 (AT” + 25" + 23" — 3) Ogden model

Note: incompressibility is an internal constraint (or kinematic
~OLE: INComp v ( Az =1/A1 A
constraint) of the material

Question: how is the pressure determined? The undetermined part of the pressure is
introduced as a Lagrange multiplier and it is determined from boundary conditions

Limit of infinitesimal deformations: [ = % Z;pv=1 Jp Ol with fpOp > 0

shear modulus ]
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Hyperelastic solids - Anisotropic

Hyperelastic materials — One last take ...
- Frame indifference
W =W (C,T) =W (E,T)
- Strain energy density function:
W(E) = %((C . E): E Saint Venant-Kirchhoff materials

- Material symmetry: none

material elastic tensor
CIJKL = CJ[KL = C[JLK = CKLIJ (constant fourth-order tensor with
minor and major symmetries)

S:—avgéE):C:E

CONTINUOUS
deformed

configuration
reference pdV
configuration BO {e I}
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Hyperelastic solids — Isotropic — Food for thought

Isotropic elastic material under hydrostatic compression

Energy Density

—_
(631

-
T

o
3

.%

Saint Venant
"Kirchhoff mate'rial |

neo-Hookean material extended

to the compressible range \

15
increasing
Poisson’s ratio
2
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Stretch

W(I, I, Is) = 2 [m (131/2)]2 —uln (1§/2> +2(1 - 3)

| Crykr =Nors0kr + p(orxdyr + 61007 k)
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Hyperelastic solids — Isotropic — Food for thought

Isotropic elastic material under uniaxial stretch

4

Blatz-Ko material

Cauchy Stress
N

B 14 16 1.8 5
Stretch

17



Hyperelastic solids — Isotropic — Food for thought

Isotropic elastic material under simple shear

- Saint Venant-Kirchhoff material

Cauchy Stress

. . . )



Hyperelastic solids — Isotropic — Food for thought

Isotropic elastic material under uniaxial compression

0.5 T T T T T

neo-Hookean material
extended to the
compressible range
1 1 1 1 1 1 |
0 0.2 0.4 0.6 0.8 1 1.2
Stretch
df; Cauchy stress tensor

True traction: tz = = = 0Ny — t=0on (symmetric, spatial tensor,
dA a.k.a., true stress)

Saint Venant
Kirchhoff material

First Piola—Kirchhoff stress tensor

df; first Piola-Kirchhoff
~ =P, ;N;j<=T=PN stress tensor

dAo (non-symmetric, two-point tensor,
a.k.a. engineering stress) g

Nominal traction: [; =



Lecture 8 — Hyperelastic solids

Any questions?
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