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Lecture 11 — Constitutive relations
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Constitutive relations

Constraints on constitutive relations

- Relations that describe the response of the material to mechanical and

thermal loading, e.g., o,q,u,T (11 constitutive equations)

o=0 +oW qg=0,pou(F,s), T #0 (with 5§ =0) isothermal processes
o=0 1o q=0W(F,T), §#0 (with T =0) isentropic processes

- Can these constitutive relations be selected arbitrarily? NO!

They must follow the following fundamental principles:

Principle of determinism, principle of local action, second law of thermodynamics
restrictions (Clausius-Duhem inequality), principle of material frame indifference,
material symmetry.
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Constitutive relations

Constraints on constitutive relations

- Principle of determinism & Principle of local action
o(X,t) = f(', F', ..., T, VoT?, ..., X, 1)

time series [1'  materials with memory

f(...,t) materials with aging

Simple elastic material W =W (C,T) 8§ = 2% oW (C,T,d)
— simple fluids =—

Material with memory (infinitesimal strain) o (t) = fioo G(t —t')e(t)dt

CONTINUOUS dB ; d
eforme
configuration
reference pdV
configuration BO { e [} b



Materials with memory

Creep, relaxation and hysteresis

Creep Relaxation Model
Parameters
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Materials with memory

Wave propagation
Oo 82’11, u(gj, t) = uoei(‘*’t_kw)

- 1D viscoelastic solid 92 = Pz complex wavenumber &

oxr
(balance of linear momentum €= 9z frequency w

. 71 .~ EQE1 m . _ I
- Standard linear model 0 + 550 = 5 g, [e + 5 e] stress-strain-time



Materials with memory

Wave propagation

. . . oo 92u ulz. t) = u ei(wt—kzm)
- 1D viscoelastic solid or pw ( ,821 0 complex wavenumber £
(balance of linear momentum) — 9z frequency w

i : m -~ _FEoEs m ¢ - in-ti
Standard linear model 0 + 750 = 5 F; [e + 5 e] stress-strain-time

- Fourier transform d(w) = Mw)é(w) M(w) complex modulus



Materials with memory

Wave propagation — Phase velocity — Dispersion

- 1D viscoelastic solid (frequency domain) MEk? = w2,0 dispersion relation

M (w)

complex velocity ~ vc(w) =/ == =%

phase velocity vp(w) = [Re(1/v.)] ™"

\/EOEl/,O(EO + El) 6(6)—> 6(1)—>

log[w]
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Materials with memory

Wave propagation — Dissipation
- Quality factor: twice the time-averaged strain-energy density divided by
the time-averaged dissipated-energy density

Re(M
Q= ImEM§

dissipation factor Q!

Dissipation Factor
|

log[y/Bx (Bo T B1)/7)

log[w]



Materials with memory

Internal variables and evolution equation

The memory or path-dependency of a material can be represented through an
array of internal variables (scalars and second-order tensors)

o(X,t)=f(e, T €)= { f(e.T.€)

o = ga(o, T, &) evolution equations

The presence of additional variables in the constitutive laws requires additional
constitutive equations, namely evolution equations. The hypothesis is that the
rate of evolution of the internal variables is also determined from the local state.

Eq
- Example: standard solid model e = e(®) 4 () o Eo o
. . +—o—ANN\—o0-
internal variable o = Eyel®

o= Ele(i) _|_ 7716(1) m
evolution equation (kinetic equation) el®)_,)

6(1)—>
) = gi(0,61) = 50— etV

(1) _ _ Eo(, _ _(i)\ _ Ei (i) (anevolution equation in terms
¢ = g1 (67 51) oM (6 € ) 1 € of strain is not always possible)
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Materials with memory

Internal variables and evolution equation

The memory or path-dependency of a material can be represented through an
array of internal variables (scalars and second-order tensors)
f(e,T,§)
o(X,t) = f(e,T, €)= - . .
(X.t) = fle, T, €) { o = ga(o, T, &) evolution equations

The presence of additional variables in the constitutive laws requires additional
constitutive equations, namely evolution equations. The hypothesis is that the
rate of evolution of the internal variables is also determined from the local state.

Two types ...

Physical internal variables: describe aspects of the local physical-chemical
structure which may change spontaneously (e.g., extent of chemical reaction or
phase change, density of structural defects).

Phenomenological internal variables: mathematical constructs (e.g., inelastic
strain) with a functional dependence with stress (strain) is assumed a priori
(i.e., evolution equations).
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Materials with memory

Internal variables and thermodynamics

Using conservation of energy, the Clausius-Duhem inequality can be written as

pTéint:—p[ioa—WJrs]T'Jr[a—p—%‘ﬂ e—+q-VT >0

Coleman and Noll made the argument that this inequality must be satisfied for
every admissible process.

Let’s now consider path-dependent behavior characterized by a set of internal
variables and corresponding evolution equations that is

W =W(e,T,E) {o = gal(o,T,§)
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Materials with memory

Internal variables and thermodynamics
- Isentropic/Adiabatic processes g =0,W(e,T,&), $#0 (with T = 0)

Assuming e = €®)(a,T) + € (&), then there exists W (e, T, €)

if and only if .
(e,T,8) = W) (e — (), T) + WW(E,T)
W= e+ 00T+, 5EE, @
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Materials with memory

Internal variables and thermodynamics
- Isentropic/Adiabatic processes g =0,W(e,T,&), $#0 (with T = 0)

Assuming € = €®) (o, T) + € (&), then there exists W (e, T, §)
if and only if
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— e o e e e S e e e s s

-~
i)
o

Q
M

e o o o o o o o o O D S SN BN DI SN BEE BEE EE GEE BEE SN GEE BEE GEE GEn BEE Bam B B B M e e e

14



Viscoelasticity

Internal variables and thermodynamics

- Example: standard solid model

Internal variable e(i) (f) = f

f

|

' |
: p=po=1 !
I Evolution equation & = g(0,€&) = J_n]flg :
|

| |
| |
| |
| |
| |
| |
| |
| E, :
: e =el®) 4+ ) o Lo o :
I Clausius-Duhem inequality o = Egel® :
I 3 . .

| T (6(7’))2 Z 0 o = ElE(z) + 7716(@) m :
I e e —e_
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Viscoelasticity

Internal variables and thermodynamics

- Example: multiaxial behavior and time integration

Time integration t, — t,41 = t, + At

- Given {en+1,o-n,e£f)}

- Update internal variable efjil = m/lAtU'n + eﬁf) {1 - nf;lAt}

8”f(€)
— Pn+1 n+1
- Update stress ................. Ontl = ~,0~ 5@
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Lecture 11 — Viscoelastic solids

Any questions?




