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Lecture 14 — Isotropic plastic solids
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Isotropic plastic solids

Review: Phenomenological observations

Plasticity manifests when a stress threshold is reach (yield stress)

Yield function o4
¢(o,0v) <0 .
Additive decomposition of (small) strain: oYo B op

+ elastic part is related to the stress
+ plastic part depends on material history

v

€ = e(e) + E(p)
Metals: plastic flow is incompressible
(any change in volume is elastic)

Bauschinger effect \0y|r| < \UY|f\
Strain hardening:

+ isotropic hardening (eP)
+ kinematic hardening

Metals: Bridgman (c. 1940)
Yield function is independent of hydrostatic pressure




Isotropic plastic solids

Review: Ideal plastic solids — Small strains
Constitutive law defined by yield function, flow potential and hardening rule

Plasticity manifests when a stress threshold is reach (yield stress)
Yield function ¢(o,&) <0
Internal variable (for isotropic hardening) f — fot Hé(p) ‘ |dt

Additive decomposition of (small) strain: € = €(®) + €(P)

Consistency condition ¢ = 0 — solve for A
(determine )\ under plastic loading; A = 0, otherwise)

Strain energy density: W (e, &) = W (e — eP)(£)) + WP ()
(Lecture 11)

Evolution equations (Lecture 11): e?) = \r(o, &) = A&
? oo
- Flow rule (flow potential) . .
- Hardening rule f = )\h(O', f)
Cauchy stress tensor: o= 1L oW ') — c€ - ele)

po Oe(e)



Isotropic plastic solids

Yield function and flow potential

01

Space of principal values
of the Cauchy stress tensor

¢(o,£) =0
(elastic behavior inside,
inadmissible behavior outside)

02

01

Space of principal values
of the Cauchy stress tensor

A

¢(o,§) =0
(elastic behavior inside,
inadmissible behavior outside)

02

G(o,§) (iso-surface of
flow potential)

_ 9G G(Uaf) — gb(O’,f)

associated flow rule

G(0o,&) (iso-surface of
flow potential)

oG

9¢
oo

03

G(o,§) # ¢(0,¢)

non-associated flow rule



Isotropic plastic solids

Yield function and flow potential (from your undergrad)

A

01
Space of principal values
of the Cauchy stress tensor

G(o,§) (iso-surface of
flow potential)

G(o,8) = ¢(o,¢)

associated flow rule

¢(o,§) =0
(elastic behavior inside,
inadmissible behavior outside)

02 03

- Frame indifference and isotropy %  Eample: Tresca Criterion, or
(function of principal stresses) A Maximum-shear-stress

o,
¢(U7€) — ¢(0170-27O-37€) A

g
Yield function is independent : 5
of hydrostatic pressure 0
I =tr(o) = —3p e : -



Isotropic plastic solids

Yield function and flow potential (from your undergrad)

inadmissible behavior outside)

A

01
Space of principal values
of the Cauchy stress tensor

G(o,§) (iso-surface of
flow potential)

G(o,8) = ¢(o,¢)

associated flow rule

¢(a,§) =0

(elastic behavior inside,

02 03

Fram? indiffe.rer.me and isotropy 5/6 V' Example: von Mises criterion
(function of principal stresses) oo — oy = /3T
¢(0-7€) — ¢(0'170-27O-37£) %

Yield function is independent

of hydrostatic pressure

I =tr(o) =—3p
Jo = %[(01 —09)% 4 (09 — 03)* + (01 — 03)°]




Isotropic plastic solids

J, or von Mises plasticity

Plastic flow is incompressible.  _ _ Lir(e)I

deviatoric parts of strain and stress

Yield function is isotropic s=0+pl =0 — tr(o)
and independent of
. 1 2 second invariant of
hYdrOStat|C pressure. Jo = §H ” the deviatoric stress tensor
t .
Internal variable e? = [, \/2/ /3]|®)||dt

Yield function ¢(o,eP) =+/2J5 — \/2/30y (eP) = ||s|| — +/2/30y (e
power-law fit Uy(ep) = Oyqo + C(e )

Consistency condition (under plastic loading) gb — 0 — solve for A

Evolution equations: e(P) — AGG(U e’) _ )\8¢>(a e’) _ }\233
- Flow rule (associated flow rule) o O Il
- Hardening rule el = )\h(o', eP) = /3/2)\

p oW c€ - e(e)

Cauchy stress tensor: o= G =



Isotropic plastic solids

Numerical example

displacements magnified 5x
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Isotropic plastic solids

Time integration must find admissible solutions!

- Time discretization: t, — tp11 =t, + At
Straightforward before [Lecture 10], not so easy now ...

- An acceptable algorithm should satisfy three basic requirements:
(a) consistency with the constitutive relations
(first-order accuracy; second-order accuracy);
(b) numerical stability;

(c) incremental plastic consistency. plastic consistency

convergence with
respect to time step size

- Generalized midpoint rule:
YUYn+1 = Yn + Atf(tn—i—ou (1 - a)?/n + ayn+1>

Aside: vy = f(t,y)

W = f(tnta, (1 — Q)Yn + QYpr1)

11



Isotropic plastic solids

Time integration must find admissible solutions!
- Time discretization: t, — tp11 =t, + At

- Generalized midpoint rule: {an,egf),en,enﬂ} — {anﬂ,efﬁl,eﬁﬂ}

with hpia =h((1 — @)oo, + @opi1, (1 —a)el + 04657,+1)

,,(,LpJ)rl = e 4 ATy 1 g
with Tnta =7((1 = a)on + aoni, (1 — a)el + aey )
Tnt1 =C: (€ng1 — 521)
Pntr1 = P(Ony1, 6£+1) =0
... but, is this ‘plastic loading’ ()\ > (0) or not?

7(14)_1 — [en—l— — Gng)] A)\rn—i—a elastic strain which would result
' from a purely elastic step .




Isotropic plastic solids

Return mapping algorithms: elastic predictor/plastic corrector
- Time discretization: t, — tp11 =t, + At

- Elastic predictor: {an,e%p), e en+1} N {a;’;H, eP) — e e, =eb AN = 0}

e)* D elastic o*

7(1—|)—1 — €En+1 €< ) predictor — 19n+l
plastic

* __ € (e)* corrector

Un+1 —C n—l—l
On+1

- Question: @0}, 1,eb) <07? on
.. Yes: within the elastic domain. ¢(on,€p) =0

initial yield surface

¢(Ont1, efL—Fl) =0
updated yield surface

Done
.. No: solve a non-linear system of equations.
( ) (e)* Newton-Raphson
”"‘1 €nt1 T ATy o =0 iterations to solve for
n—i—l — € — AMipya =0 — {67(164)-176£+17A)‘ > O}

P(ct : 51—{)—1761797,—{—1) =0 13



Isotropic plastic solids

Return mapping algorithms: elastic predictor/plastic corrector
- Time discretization: t, — tp11 =t, + At

- Elastic predictor: {a'n,eglp),ep en+1} — {O';klﬂ,e,f,&p}rl = e%p), €hy1 = €0 AN = O}

e)* D elastic o*

7(1_*)_1 — €En+1 €< ) predictor ntl
plastic

* __ € (e)* corrector

Gn+1 —C n—l—l
On+1

- Question: Qb( n—l—17 ) < 07? On ¢(ont1,€,,4) =0
.. Yes: within the elastic domain. (o, ep) =0 pdated yield surface
initial yield surface
Done
.. No: solve a non-linear system of equations.
Plastic corrector ®  p
() _ —{oni el e
€nt+1 = + AAy4q

% e . — plastic corrector
Ont1 =041 —C°: A)\rnJra. P y




Isotropic plastic solids

Fully implicit return mapping and perfect plasticity
- Time discretization: t, — tp11 =t, + At

elastic
predictor

plastic
corrector

- Fully implicit algorithm (o = 1)

P(ont1, €Z+1) =0

d(Tp,el) =0 updated yield surface

initial yield surface

elastic
predictor

*
Un—i—l

- Perfect plasticity (v = 1)

+ no hardening, thus no internal variable
+ no evolving yield surface

plastic
corrector

¢(‘7n) = ¢(0'n+1) =0

yield surface 15



Isotropic plastic solids

J, or von Mises plasticity — Radial return algorithm
- Time discretization: ¢, — tp41 = t, + At

- Elastic predictor: {an,egp),eg; en+1} - {a;H,engjl — e P, =€l AN = 0}

e )x P A
67(14)—1 = €nt1 — 651)
* (e)x*

S e .
Gn+1——C '€n+1

- Question: @0}, 1,eb) <07? predictor

.. Yes: within the elastic domain. Done

... No: solve a non-linear system of equations. ss

Plastic corrector
) 38,

Recall: 741 = a—i = ondtl

n

— (p) _p
11 2H8n+1H — {07H446n+&76n+1

Sn+1

Ontl = O, 1 — SUANT

I||8n+1 | — plastic corrector (radial return)
16




Isotropic plastic solids

J, or von Mises plasticity — Radial return algorithm
- Time discretization: ¢, — tp41 = t, + At

O'* elastic
Y n+1 predictor
o plastic
n+1 —® corrector
O-ni
| » €
€n €En+1
en
p
en—{—l

Space of principal values
of the deviatoric part of
the Cauchy stress tensor

17



Isotropic plastic solids

Any questions?

Lecture #13-#14

Theory
of plastic
solids

18



