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Lecture 17 — Solid-solid interactions

Formulation of solid-solid interactions (contact mechanics) as the analytical
upscaling of continuum solids under kinematic assumptions and specific
boundary conditions.
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- Unilateral contact law in continuum mechanics (normal direction)

Hertz-Signorini g(0B™M ,9B*) > 0 no penetration (gap function)

conditions p(@BM) <0 no tension (contact pressure)
g(@Bﬁl), 8B,E2))p(8B§1)) = (0  complementary
I . : . conditions

- Friction law (tangential direction) -



Lecture 17 — Solid-solid interactions

Formulation of solid-solid interactions (contact mechanics) as the analytical
upscaling of continuum solids under kinematic assumptions and specific

boundary conditions.
Engineering applications:

Bottom View

Side View

Tribology, bearings (lubrication, friction and wear). 232

Electrical contact resistance, locomotive wheel-rail contact,

braking systemes, tires, gasket seals, metal forming, ultrasonic
welding Q (in general, contact surface and contact pressure
are coupled with each other). Q

At the core behavior of granular materials. Q
Indentation hardness. Q

Force

Sample




Solid-solid interactions: contact mechanics

Two-dimensional general so

utions

- Cartesian coordinates

Displacement Formulation: Navier’s Equation

wWu+ A+ WV -u)+ F=0

(Airy’s representation)

Y

7‘ Helmholtz Representation: ¢, ¢
. = V V
- Polar coordinates V27 X Vg
(Airy’s representation)

(0 +2u)VV3291 uV X V2p+F =0

Galerkin Vector: V
u=21-)V2V-V(V-V)
=SVAV =0

P '

\

Papkovich-Neuber: 4, B
A-R
B +
4(1 - 1/)}
=V24=0,V?B=0

2uu = A-V

f

W Lamé’s Strain Potential: i)

2 u=V ¢/21
= (zero body forces)
Op
_ 194 | 1 9% _ 0%
Orr = 7 Br r2 002 900 = Fr2

- Polar coordinates and axisymmetric

¢ = ag + a1 log(r) + asr? + asr? log(r)

Love’s Strain Function: V.

V="Ve,
V4V, =0
u=21-V?V,e -V "a—‘fz

Tro — —

Boussinesq’s Potentials: 4,8
Axisymmetric Problem
A=A_(r,2)e,, B = B (r,z)
=V?4,=0,V?B =0




Solid-solid interactions: contact mechanics

Two-dimensional general solutions

- Half-space under normal loads (concentrated and distributed)

gb = (a127“ lOg(T) -+ &157“9) COS(Q) + (b127“ log(r) + b15’l“9) sm(@)

Boundary conditions -—- -@

Tro(r,m) = Tr9(r,0) = 0
ago(r,m) = opg(r,0) =0
ajz2 = b2 =0
Equilibrium
bis =—Fx/m=0

a5 = Fy /7

Resulting stress field

orr = — 2 sin(f)

opp = Tro = 0

FX=0 V

Fy

—%
0 ‘\

(Point Loading)



Solid-solid interactions: contact mechanics

Contact mechanics: two-dimensional problems
Half-space under normal loads (concentrated and distributed)
Fy

Resulting stress field x A0 Y
QFY . |l 0 |\\ /Il II,’
O-rrnr _ Tr Sln(e) ||| r \\\\ ///C/ ”l

aggg = Trg = 0
Resulting displacement field (linear elasticity)
By (1 = v)(0 — 7/2) cos(0) — 2log(r) sin(#)] + Asin(h)

[—(1 —v)(0 — 7/2)sin(f) — 21og(r) cos(f) — (1 + v) cos(0)]+A cos(6)

~
~
~

\ B

uT:TFE
F
ug = 7

+ Rigid motion component cannot be solved for
+ Singular displacement/stress under the point load

+ Unbounded logarithmic terms lead to unrealistic @

predictions at infinity

(Point Loading)



Solid-solid interactions: contact mechanics

Contact mechanics: two-dimensional problems

- Indentation of an elastic half-space by a frictionless cylindrical punch

Boundary conditions:
+ surface displacement

Ny—l 2 z€]0,a]
ﬂy(a) = Z
+ frictionless

i dFX:O dFy :p(x) =7
Contact radius: a = 7R

Contact pressure:

i, (x) =7 — (R — VR — 27)

— p(z) = 25Va? — 22 2 €0,d]

e )_ 2P (7 —

lllL_l!{llll -,
)

Contact law (force per unit of length):

maximum shear
stress contours

a/2:4PR—’7R:>

P(y) =
= V7R

mFE
ll

(Cylinder Contact Loading)




Solid-solid interactions: contact mechanics

Three-dimensional solutions (applications are 3D!)

Displacement Formulation: Navier’s Equation

uwu+ A+ WV -u)+ F=0

Y

0 Helmholtz Representation: ¢, @

u=Vo+VXe

(0+2u)VV291 uV X V2o+F =0

Galerkin Vector: V
u=21-)V2V-V(V-V)
=V =0

{

\

Papkovich-Neuber: 4, B
A-R
B +
41 -v)
=V24'=0, V2B =0

2 = A-V

— @

Q Lamé’s Strain Potential: ¢
\

=V $/21

(zero body forces)

Love’s Strain Function: V,
V="Ve,
V.20
u=21-vV?Ve.-V Oa—‘fz

Boussinesq’s Potentials: 4, B
Axisymmetric Problem
A=A_(r,2)e,, B= B (r,z)

=>V24,=0,V?B =0 Q



Solid-solid interactions: contact mechanics

Three-dimensional solutions (applications are 3D!)

- Elastic half-space under normal load: Boussinesq’s problem

Axisymmetric coordinate system ;

Potentials: harmonic functions
A, =S, B=Cylog(p+2)

Displacement field:

N _
ur = gy |~ (1-20)% |
_ P |2 2(-v)
Uz = Znp 3 + - }
Stress field (Imear elasticity): (#,9,2) = (r = Va? + 42,0 = tan" (y/), p = /2% + 42, 2%)
P 1 3zr2
o= |- ) (5 - ) - 3 }
Opp = _§(1 — 2;/) [%2 — p% — p%} + Singular displacement/stress
; under the point load
2 :
O,y = —%7’% Try = _g_P% + Displacements are bounded!
m™r
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Solid-solid interactions: contact mechanics

Frictionless spherical indentation of an elastic half-space

Rigid Indenter

Boundary conditions:
+ surface displacement

B(r) =7 — (R — VRE=72) Alllllllll

R~ ”y N 7“2 r €10, a] A A A
+ frictionless Cj
dF, =0 dF, =p(r) ="

Contact radius: a = V7R

maximum shear

Contact pressure (not straightforward): ¥ stress contours

—— p(r) = 23’71:3\/a2 —r2 | rel0,da

Contact law:

P(’)/) _ 3 . E,/ R1/2 3/2
a=+\YR

10



Solid-solid interactions: contact mechanics

Frictionless spherical indentation of an elastic half-space

Boundary conditions:
+ surface displacement
i.(r) =7~ (R~ VR —17)
~ vy — 552 r€l0,d]
+ frictionless
dF, =0 dF, =p(r) ="

Contact radius: a = /7R -

1

— .(ey) =5 [ s T

r(&§,m) ded
£)2+(y—n)? &

Contact pressure (not straightforward):

p(r) = 2‘;371;3 va?—r2 | re|0,al
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Solid-solid interactions: contact mechanics

Contact mechanics: three-dimensional problems

- Frictionless spherical indentation of an elastic half-space

ﬂy(a) =
+ frictionless
dF, =0

— p(r) = 2:;]:3

Boundary conditions:
+ surface displacement

'L_Lz(r) =7 —

(R—VR2 —r2)

— %72 r € [0, al

dF, = p(r) =7

Contact radius: a = 7R

Contact pressure:

a>—1r2 |, relo,ad

Contact Iaw:

P(y) =

E
31 - B R1/2,3/2

= VR

(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

The vertical displacement of surface points is given by

i (o) = 1”//\/:6 Ly

where the Boussinesq’s solution for vertical displacement of surface point (z,y)
due to a concentrated force pdédn acting on (£,7n) was used. Using polar coor-
dinates (s, ¢), with origin at a distance r from the center of the circular contact
surface and a pressure psdsd¢ with distribution p(r) = va? —r2, the above
integral simplifies to

1— 2 P 2w
ﬂz(T):iy i / gb/ Va2 —r2 —2rscos ¢ — s2ds

mE 2mad

2#@3

with s; given by the positive root of a? —r? — 2rscos ¢ — s? = 0. Therefore, the
vertical displacement of points r within the contact surface (r < a) is given by

171/ 3P

33 (2a — 7"2)

uz(r) =

Lastly, compatibility of surface displacement yields

1o 1-1v23P _ 5, 5
c=y - s = (20 -
Uz =77 5R" B g3 )

and, equating coefficients of the second order polynomial of r, expressions for
P(v) and for a(vy) are obtained as follows

1 1—v2 3P 2 _

_ = - a” = 7}%

2R E _8a3 _—

_ 1-123P P =4_E _R12,3/2
Y= " 1a 31—v2




Solid-solid interactions: contact mechanics

Frictionless indentation of an elastic half-space

0.0

—

04 H . 1
NN fig.: von Mises stress

\ + complex stress field

under the indenter

+ most critical state of
stress not necessarily
at the contact interface

+ not all cases are
amenable of analytical
solution

+ cylindrical indenter
but not an elastic
material:

P(v) =7

0.51

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
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Solid-solid interactions: contact mechanics

Contact between two elastic spheres

' Boundary conditions: ¢

+ surface displacement elastic
+ frictionless v

dF,. =0 dF, =p(r)=?
Contact radius: a = \/yR/2

Contact pressure (not straightforward):

SEE EEE E—. E— EEE EEE EEE EEE EEE EEE EEE EEE EESn S mSn S S S S S S S S S S S G S S S S S S S S S mew .

-—ee e e e e . . . .

s o o o o o o e e e M S EEe EEn EEE EEm e EEm S EEn Eam EEm Bam e EEm S Eam B M M M E Em Em Em =



Solid-solid interactions: contact mechanics

Contact between two elastic spheres

+ surface displa

D
~7 T 3R,

+ frictionless

— p(r) = 2:;1;3
Contact law:

Boundary conditions:

Uy (1) + Uy a(r) ol

dF, =0 dF, =p(r) ="
Contact radius: a2 =~ (1/R; + 1/R,)""

elastic

cement

7“2—%7“2 , r€10,a]

Contact pressure (not straightforward):

a?—r2 | rel0,q

o =7 (1/Ry +1/Ry)"

1—v 1—v2 —1
P(’Y):%( Ell + EQQ) (_

15



ICS

contact mechani

Interactions

Solid-solid

Contact mechanics at the core behavior of granular media

- How amorphous solids support stress?

Yue Zhang, Robert Behringer
Duke University

Pull-out experiment in granular material

||

Ll

UL

| |

Prof. Behringer. Duke University
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Solid-solid interactions: contact mechanics

Dominant mechanisms (a mechano-chemical point of view)
- Elastic deformations

- Plastic deformations

- Bonding/Solid bridge

- Strain-rate mechanisms
- Fracture

- Transport phenomena

Confined
granular system

Bridging length-scales

- Analytical up-scaling of continuum contact mechanics
(geometric nonlinearities and material nonlinearities)

Underlying assumption

- Contacts between particles are independent
(interaction between particles is not affected by neighboring particles) .



Solid-solid interactions: contact mechanics

Any questions?




Lecture 17 — Solid-solid interactions

Appendix: Granular systems at high levels

of confinement

19



Granular systems at high levels of confinement

Dominant mechanisms (a mechano-chemical point of view)
- Elastic deformations P

- Plastic deformations

- Bonding/Solid bridge

- Strain-rate mechanisms
- Fracture

- Transport phenomena

Confined
granular system

Bridging length-scales

- Analytical up-scaling of continuum contact mechanics
(geometric nonlinearities and material nonlinearities)

Underlying assumption
- Contacts between particles are independent

(interaction between particles is not affected by neighboring particles) ,



Granular systems at high levels of confinement

Technological/Scientific impact

Not an issue until recent years
(e.g., there is a need to be predictive at high relative densities)

O

5 4 ; : . bt L3
R 3 | ~§-7 | Elastoplastic
: o. . i . .
PR ) i 18 Sirr:il?rity ] spherical particles
o ‘ O solution -~
&, & . & | Mesarovic & Fleck (2000)
= : : 7 o
. i T P i 00 Harthong et al. (2009)
e R Case-by-case
3 2|l O// e ,.000, s S| y (X X)
2 ST a0 iy . . .
£, A | ‘ ... empirical scaling of analytical solutions
_________________ 0 Y ) ! 1alytc _
3 SIaa N (e.g. Storakers similarity solution)
0 ; ‘ : : epgs . .
0 10 20 30 40 50 ... curve-fitting of finite-element solutions

Deformation [%] — (/D)

Elastoplastic
spherical particles

Jerier et al. (2011)




Granular systems at high levels of confinement

Question:
To what extent contacts between particles are independent?

Restrict attention to:

-E

lastic spheres

- Absence of gravitational forces, adhesion and friction

1400
& 1200
1000
800
600

400

Pressure [kPa] - (P/mR

200

0

llllllllll

0 10 20 30 40 50 60
Deformation [%)]

Contact Surface [-] - (S/nRZ)

=
(N

=
[N
‘

—_

o
oo
T

o
o

o
~

=
[N

o

llllllllll |
rrrrrrrrrrrrrrrrrrrrrr *7
i K
g
___________________________ %
: * : ——“"
o A : ;4 g T Hertz -
N k=T theory |
’/ﬁ\'” \ i i i
0 10 20 30 40 50 60

Deformation [%]

% Tatara (1991): experimental data, rubber sphere of radius 10 mm,
no hysteresis, no permanent deformations, E = 1.85 MPa, v = 0.46

~100%
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Granular systems at high levels of confinement

Question:
To what extent contacts between particles are independent?

Restrict attention to:
- Elastic spheres
- Absence of gravitational forces, adhesion and friction

Intuition and observation suggest a gap in knowledge

Any contactlaw P =0

... we know that P £ 0

23



Elastic interactions beyond Hertz theory

Confined
granular system
Schematic of loading Hertz theory Nonlocal theory
configuration approach approach
Hertz theory (1881)

nH ™ 4\ Eq E> Ry ' Ro elastic properties

2 2
P(y) = nH,y3/2 1 _3 (1 14 1 2> ( 1 4 1 )1/2 Geometry and

Relative position between particles
Y= R1+ Rp — ||z — =5||

24



Elastic interactions beyond Hertz theory

Hertz theory:

Single-loaded

' ! \ i ' boundary-value
Schematic of loading i problem
|

configuration

Compatibility condition: v = Ry —\/ R? — 12+ Ry — \/ R5 — r? + w(r) + way(r)

Flat circular contact surface 3P(1 o Vz)
Spherically-distributed contact pressure  w, (1) = 2 L (2a% — r?)
(based on Boussinesq’s solution) 8a” By

25



Elastic interactions beyond Hertz theory

Principle of superposition:

Confined U< A~J Y\ &~  _L _ _ _ __i_\___A.
granular ,
system ' Single-loaded
boundary-value
problem

Normal displacement: u,,(6)

26



Elastic interactions beyond Hertz theory

Single-loaded boundary-value problem:

> Contact surface (Hertz approximation):

(o) = S (20 = 1)

Traction free surface:

Un (0) =
0.01
- o : f
E) o T
(0]
i £ 002} -
i O
®
: ; o -0.03
Exact Approximate = N I N N S S o _
boundary-value problem £ o |« contactarea 3 |
problem I > g _0057;30 ..... .......... .......... .......... .......... ......... i
Exact solution : Zhupanska (2011) 0% 30 e w120 150 180
(reduces to a Fredholm integral equation of the second kind) Angular Position [deg]

Approximate problem (based on Boussinesq’s solution): |||l /pm = O(a?/R?)

27



Nonlocal contact formulation

Principle of superposition:

k
‘ I P2 k NL
/ | Zke/\fl Py nyty
|
! N A
N A RN \
2y | D, Pk
P} 4
e | Hertz’s hypotheses:
: - Independent contacts (RELAXED)
P? it il It : —————————————— ~— - Flat circular contact surface
: . : - Linear elasticity
_ \ : - Spherically-distributed contact pressure
Schematic of loading
configuration | Plk; Amenable to analytical integration!
TLNL . 47TRZ'EZ' Sin(ejik/z)
TR (14 1) [=201 — vy) — 2(1 — 2u) sin(B;/2) + (7 — 8u;) sin(6ix /2)?]
L NL _ k/ NL k/ NL
Nonlocal contributions: 7i; = ZkeN‘ b, /njz'k + ZkeN, P; /nijk
— 7 J



Nonlocal contact formulation

Confined
granular system

Schematic of loading Hertz theory Nonlocal theory
configuration approach approach

Nonlocal contact formulation

— 3/2
P('Y) — ng (7 + ’VNL) / Geometry, elastic properties and loading configuration

Nonlocal contributions (analytical expression)

Gonzalez M. and Cuitino A.M., “A nonlocal contact formulation for confined granular systems”,

Journal of the Mechanics and Physics of Solids 2012; 60:333-350.
29



Nonlocal contact formulation

Two intuitive examples:

Hertz theory: P=0

Nonlocal formulation: P = ”3—721?3/2
NI

Hertz theory: P = ny~y3/?

Nonlocal formulation:
P =npy32+0(y?)

3 2
P =nyy3/? + 3142 4 0(75/2)

30



Nonlocal contact formulation - Validation

llllllllll

Finite-element model.

» Elements: ~1.00.000
» Nodes: ~1.500.000
» CPU-time: hours

Nonlocal formulation.

TTTTTTTTTT

Experimental setup

» Memory requirements: none
» CPU-time: few seconds

w w
o [3)]
T

N
a
T

Discrepancy [%]
& S

=
o
T

Deformation [%]

Difference depends
only on Poisson’s ratio

_ P(0)—nyy3/?
niy3/?

Pressure [kPa] - (P/nRZ)

Pressure [kPa] - (P/nR?)

Tatara-1989

w

(5]

o
T

80%

40

I!u

0 5 10 15 20 25 30 35
Deformation [%]

=L (31 21/) 24 L, (31_—21/V>2€+O(€5/4)
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Nonlocal contact formulation — Granular crystals

Question:
To what extent contacts between particles are independent?

Compaction of body centered cubic packing:

Two different loading conditions: Hydrostatic compaction
Die compaction
Difference between Hertz theory and the nonlocal contact formulation.

Die compaction

Hydrostatic

compaction
Unit cell

32



Nonlocal contact formulation — Granular crystals

L | | | | e 5 T % % %
= 120} ¢ 'Hydrostatic compaction
< | pFSe Sl s S S ARy
@ 100 5150
= 80 )
© c
Dx‘__' 8 100 o
o 60 0
> @
40f - A
» TV e - s g Tl B L.
9 50 """
o

B e s

0 ‘ ; i i i . 0 i ; i i i ‘_
0.7 Qs 0.8 0.85 0.9 0.95 07 075 08 085 09 095 1
Relative Density Relative Density
;’ ? ; el :‘ ! % ! %
---------------- R TLRREECITER-PPRPRRRYY & ' Die compaction
Vertical P e A e S
_______________________________________________ 9
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 5\150_ o
=
Transversal S, : :
‘ D yogl. i v=044:
3] : ;
£
D E ; 5 : ; ;
50 - = e SRR e
: : : : j v=0.00

; i i i . i . : i i .
0.7 0.75 0.8 0.85 0.9 0.95 0.7 0.75 0.8 0.85 0.9 0.95 1

Relative Density Relative Density



Nonlocal contact formulation — Can we do better?

Principle of superposition:

i | PQk
' Z PF/n
/ | keN1 1
!
: N N\
. P s AT '_ ........... .
? ’Y I Zke/\/é P2 "
P} /
e | Hertz’s hypotheses:
: - Independent contacts (RELAXED)
P? L O : —————————————— ~ - Flat circular contact surface
: . : - Linear elasticity
| \ : - Spherically-distributed contact pressure
Schematic of loading
configuration | ph Amenable to analytical integration!
1

NL
21k

NL
12k

Curvature correction: v = Ry — 4/ R? —r?2+ Ry — 3/ R3 — 12 4+ wi(r) + wa(r) —VNL
N 7‘4 6

’f'2 T
Contact radius correction: @ + aN[] ~ 2RZ T 8R; T 16 R3

34



Nonlocal contact formulation - Validation

Finite-element model.

> Elements: ~1.00.000
> Nodes: ~1.500.000
» CPU-time: hours

Nonlocal formulation.

» Memory requirements: none
» CPU-time: few seconds

1.2 ‘ ‘ —
contact impingement
0.8
2 - -
2 Vertical T
gﬁg 0.6 ! _ - . ;’v
g 04 == Zi#
£ =" ,—ssgsﬁf"/:' '
S 0.2 e
L=t Horizontal
0 | | | |
Die Compaction 0 10 20 30 40 50
Deformation [%] - (5%)

450
400 e e e e G e e e
ol Tatara-1989
s 350
S
|
o 250} - e
i I : P
ﬁ. 200} - - AERRRRRRERNSSESESSS ... S - :....’..¢ .......
o .7
- e I R ;J" Hertz
§ 100 |+ = o = s 2 L .......... '..‘..’..‘ .......... theory ......
= %5 "a"" : = g
0 i i i
0 10 20 30 40
Deformation [%]
1500 ‘ :
contact :
o 1250+ impingement :
1000 | :
= curvature
g 750 t correction /
2
5 500+ R
£ 2501 -
O = — ¥ |
0 10 20 30 40 50
Deformation [%] - (3%)

Milestone: Development and validation of a nonlocal contact formulation

Insight: The discrepancy with Hertzian prediction depends on Poisson’s ratio

Agarwal A. and Gonzalez M., “Contact radius and curvature corrections to the
nonlocal contact formulation ...”, International Journal of Engineering Science 2018; 133, 26-46.
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