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Announcements

Guidelines for special project. Final report:

- Monday May 2" at noon
- Technical report in LaTex, maximum of 4 pages (upload to Brightspace)

- Rewrite equations using the notation and nomenclature adopted in
the class

- Grading: 5% of final grade (17% of project grade)
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Structural elements: beams, plates, shells

Formulation of structural elements (beams, plates, shells) as the analytical
upscaling of continuum solids under kinematic assumptions.
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Structural elements: beams, plates, shells

Formulation of structural elements (beams, plates, shells) as the analytical
upscaling of continuum solids under kinematic assumptions.

CONTINUOUS

reference
configuration BO {e I}
Linearized kinematic — Small trains
- The linearization is evaluated in the undeformed configuration
(ie, X - X +u(X)and F=1,Vou=Vu):

<V¢E; u) = %[Vu 4+ (VU)T] — € small-strain tensor
(employed in elasticity theory)

- Simplified geometry

- Simplifying kinematic assumptions
(i.e., simplified displacement field w = (u1, uz, u3) )



Structural elements: beams, plates, shells

Simplified geometry
- Many everyday engineering applications utilize structural members
such as rods, beams, cables, plates, and shells.

- Structural members can be
idealized as one-dimensional
(rods, beams, and cables) and
two-dimensional (plates and

|
shells) members. &3DStructures ),

. . . N
- Assumption: two dimensions
Shells

(in the case of beams) or
one dimension (in the case of

- Stress-strain behavior is upscaled to a relationship between internal

resultants and kinematic variables (of the mid-plane).

plates and shells) are significantly
smaller than the other dimensions.



Structural elements: beams, plates, shells

Review (undergrad): force and moment resultants
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Structural elements: beams, plates, shells

Timoshenko beams simplified geometry: b < L, h < L
- Kinematic assumptions, with w < h —0;
uy(x, z) = u(x) + 205 (x)

Ug = 0

uz(x) = w(x)

- Small-strain tensor, with (,1)* < 1 |
1 — : > T

Y |

|

|

cij = 5 (Ui + uj)

I U+ 282’1 0 ((92 + U_J,l)/z ;_—»l
€ij = 0 0 0 u(z)
_((92 —+ ’(I)’l)/Q 0 0
e 4+ 2Ry 0 %3/2 Iimematlc v_arlables )
o ei1(r)  Ru(z) sz
€ij = 0 0 0 _ _
3 extensional, bending, and shear
713/2 0 0 components of beam strain



Structural elements: beams, plates, shells

Timoshenko beams

- Small-strain tensor || Linear elasticity (generalized Hooke’s law)

€11 +2k11 0O ’713/2 E(Ell + ZRll) 0 ﬁi@B
€ij — 0 0 0 Oi5 — 0 0 0
Y13/2 0 0 %’713 0 0

.. ASSUMINg 099 < 011 and o033 <K 011
Since lateral surfaces are traction incompatible

' irecti ith strain field
free, stresses in 22 and 33 directions with strain fie
must be zero on free surfaces.

(Reissner’s theory
overcomes this issue)

(1 —v) v v 0 0 0 |
v (1—-v) v 0 0 0
- E v v (1—-v) 0 0 0
" (1+v)(1-2v) 0 0 0 (1—2v)/2 0 0
0 0 0 0 (1—-2v)/2 0

|0 0 0 0 0 (1-2v)/2]
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Structural elements: beams, plates, shells

Timoshenko beams

- Small-strain tensor || Linear elasticity (generalized Hooke’s law)

€11 +2k11 0 A13/2 E(€11 + 2k11) O ﬁ?m
€ = 0 0 0 Gij = 0 0 0
Y13/2 0 0 ﬁ’?m 0 0

— o e e o o o o o

|
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Structural elements: beams, plates, shells

Timoshenko beams simplified geometry: b < L, h < L

- Linear elasticity (generalized Hooke’s law) —03
assuming 099 <K 011 and o33 < 011
Since lateral surfaces are traction
free, stresses in 22 and 33 directions
must be zero on free surfaces.

E(€11 + 2R11) O ﬁ’%s
Oi5 — 0 0 0
E —
sy s 0 0

- Internal resultants

. o beam geometry
N = / o11d4 M = / zondA height (), width (b)
A A :
cross-sectional area (A)
moment of inertia (/)

Vl — Ks /A UlSdA Shear correction factor (K)
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Structural elements: beams, plates, shells

Timoshenko beams

- Internal resultants

h/2

N1 =b E(gll + ZRll)dZ = EAgll I
—h/2 E

h/2 :

Ms =0 E(ZEH + 2212311)(12 = Elsokqq ;

o

—h/2 —©

EE > K AE
Vi = Kb ———A13dz = =7 '
1 /h/z 214+ T T @

Note: The shear correction factor K| is required in W1
the formulation due to the absence of shear stress
and strain at the top and bottom boundaries of the
beam. K is computed such that resultant shear

force V| creates the same strain energy as does the
true transverse stresses predicted by the _—yC
three-dimensional elasticity theory.




Structural elements: beams, plates, shells

Timoshenko beams

- Shear correction factor

h/2 g K.AE
Vi = Kb = Aadr =
: g2 20+ 0) P T a1 )

LXVI. On the Correction for Shear of the Differential Equa-
tion for Transverse Vibrations of Prismatic Bars. By
Prof. 8. P. TiMosHENKO *.

IN studying the transverse vibrations of prismatic bars,

we usually start from the differential equation

o

BIOY 22 o ()

3-17‘ 7 a‘t'.'
in which ET denotes the flexural rigidity of the bar,
0 the area of the cross-section,

e
u(z)
and : the density of the material.

When the “rotatory inertia” is taken into consideration,
the equation takes the form

S.P. Timoshenko (1921), “On the correction for shear of the

differential equation for transverse vibrations of prismatic bars”,
Philosophical Magazine and Journal of Science, 41:245, 744-746.

a1 0% _Ip 3y |, pR0%
BI 3 g aatsat 5 o 0 o o« ()
I now propose to show how the effect of the shear may be
taken into account in investigating transverse vibrations,
and I shall deduce the general equation of vibration, from
which equations (1) and (2) may be obtained as special
cases.

Fig. 1.

Dong, S. B., Alpdogan, C., & Taciroglu, E. (2010). “Much ado about
shear correction factors in Timoshenko beam theory”.
International Journal of Solids and Structures, 47(13), 1651-1665.
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Structural elements: beams, plates, shells

Timoshenko beams

- Constitutive relation
(relationship between internal resultants
and kinematic variables)

N EA 0 0
M, b —
Vi

€11
0 E[22 0 ) K11
0 0 % Y13
Euler-Bernoulli beams
- Constitutive relation

Ny o EA 0 €11
M, 10 Elss K11

|

N
>

—~0
/"
\\4—11}1

kinematic variables

ei(z)  Rulz)  Ms(@)
extensional, bending, and shear

components of beam strain -



Structural elements: beams, plates, shells

Formulation of structural elements (beams, plates, shells) as the analytical
upscaling of continuum solids under kinematic assumptions.
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Structural elements: beams, plates, shells

[] [} ’
Mindlin’s plates Simplified geometry: the plate is initially flat

- Kinematic assumptions, with w < h

ui(w,y,2) = u(z,y) + 261 (z,y)
’UQ(I, Y, Z) — ﬂ(.’l?, y) + 292(,’,17, y)

u3(xay7z) = u_)(x,y) analogy

with

W”/ beams

- Small-strain tensor, with (w0 1)* < 1
1
cij = 5 (Ui + uj)
€11 + 2R11 T12/2+ zR12 13/2
€j = |712/2 + zR12 €22 + ZKa2 Va3 /2

Y13/2 Yo3/2 0
kinematic variables kinematic variables (cont.)
€11 €22 K11 K22 Y12 K12 Y13 723
extensional strains, bending strains contribution of the mid-plane displacement to

in-plane shear, contribution of normal rotations

) 17
to in-plane shear, and shear components



Structural elements: beams, plates, shells

Mindlin’s plates
- Small-strain tensor
€11 + 2R11 Y12/2+ zR12 13/2

€j = |712/2 + zR12 €22 + zRa2  723/2
Y13/2 Vo3 /2 0

- Linear elasticity (generalized Hooke’s law)
assuming 033 < 0922 and 033 <K 011
Since top/bottom surfaces are traction
free, the stress in 33 direction must be
zero on free surfaces.

solution of a mixed boundary
condition problem

(1

@vg
A




Structural elements: beams, plates, shells

Aside: Kirchhoff plates

- Small-strain tensor, with 62 = —w; , 61 = —w

€11 + zK11 Yi12/2 + zK12
€j = |712/2 + zR12 €22 + 2K22

st _Neat2” 0

- Linear elasticity (generalized Hooke’s law)
assuming 033 < 0922 and 033 <K 011
Since top/bottom surfaces are traction
free, the stress in 33 direction must be
zero on free surfaces.

solution of a mixed boundary
condition problem




Structural elements: beams, plates, shells

Mindlin’s plates

normal
forces

in-plane
shear forces

bending
moment

twisting
moment

transverse
shear forces

Internal resultants

h2 g
Ny = / —2(511 + 2R11 + Véxx + V2ZRg)dz =
/2 1—v

FEh
1—v

5 (€11 + véa2)

Ny = /};//22 %(522 + zRoo + V€1 + VzR11)dz = % (€22 + v€11)
Vo= [ ey e+ 2em e = g e
M, = /1//22 %(gu + 2R11 + Véag + VzRag)zdz = 12(?—}13]/2) (R11 + VR22)
My = /’:/22 1_E—V2(€22 + zRoo + VE1 + VzZR11)2dz = 12(f]—ii2) (Roo + VR11)
Q12 = /_};//22 ﬁ (Y12 + 22FR12) 2dz = %512
Vi = K };//22 51+ ) 713d2 = 2-(’%_15};) Y13
= K /}:/22 21 +7) 723d2’ = %%3

K,=5/6

membrane
state

flexural
state




Structural elements: beams, plates, shells

Mindlin’s plates

- Constitutive relation
(relationship between internal resultants
and kinematic variables)

(N1\ Eh 1 v 0 §11 )
q§ N2 5 = 2 |V I 0 €22 ¢
\Vlgj 0O 0 1 ’712/2}
fMl\ 3 1 v 0

Eh
Pl S rTee N
\Q12} 0 O 1 —v \IZ',12/2

W =m0 1 Ung

kinematic variables kinematic variables (cont.)
€11 €22 K11 K22 Y12 K12 713 723
extensional strains, bending strains contribution of the mid-plane displacement to

in-plane shear, contribution of normal rotations
to in-plane shear, and shear components
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Structural elements: beams, plates, shells

Formulation of structural elements (beams, plates, shells) as the analytical
upscaling of continuum solids under kinematic assumptions.
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Review Lecture 1: Coordinate system

Curvilinear coordinate system

- An origin (relative to which positions are measured)
- A set of coordinate curves

- Basis are defined at each position in space as the tangent vectors {g,}
to the coordinate curves. Therefore, basis vectors change from position to
position. Basis {g;} are non-orthogonal in general.

| | | |
| €2 |
| | |
S N N F
| | |
| | |
| | |
ey ] —_— .
el
| | | |
S S S PR
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Structural elements: beams, plates, shells

Mindlin’s shells — Kirchhoff shells

- Like plate formulations but using an orthogonal curvilinear coordinate
system (lines of principal curvature on a smooth surface are orthogonal).

- Small-strain tensor and kinematic variables now involve local basis and
local metric.

24




Structural elements: beams, plates, shells

Shell buckling

l applied force

“Yoshimura” pattern .I.Lr
collar —

Progressive formation of a top gap —
surface texture during axial Mylar

cylinder |
buckling of a thin-walled  ,..aa —
cylinder fitted ontoa  —"a —

mandrel core

platen
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Any questions?




