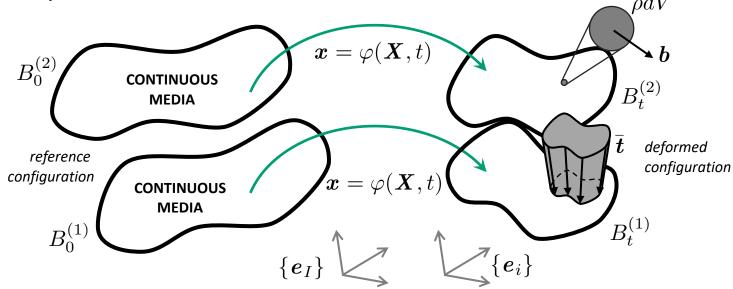


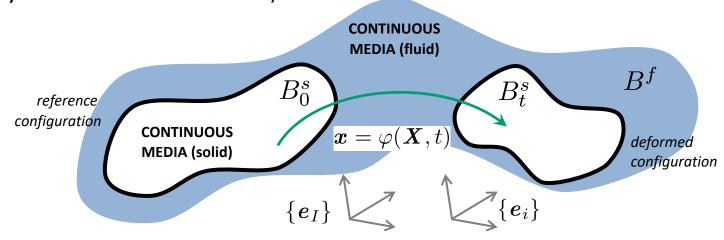
Mechanical Engineering Instructor: Prof. Marcial Gonzalez


Last modified: 4/28/22 7:49:21 AM

ME 597 – Solid Mechanics II ... so far ...

Lecture 22 – Solid-solid interactions ...

Formulation of **solid-solid interactions (contact mechanics)** as the analytical upscaling of continuum solids under kinematic assumptions and specific boundary conditions.


- Unilateral contact law in continuum mechanics (normal direction)

$$\begin{array}{ll} \textit{Hertz-Signorini} & g(\partial B_t^{(1)}, \partial B_t^{(2)}) \geq 0 & \text{no penetration (gap function)} \\ \textit{conditions} & p(\partial B_t^{(1)}) \leq 0 & \text{no tension (contact pressure)} \\ g(\partial B_t^{(1)}, \partial B_t^{(2)}) p(\partial B_t^{(1)}) = 0 & \text{complementary conditions} \\ \end{array}$$

- Friction law (tangential direction)

Lecture 22 – ... and fluid-solid interactions

Formulation of **fluid-solid interactions or fluid-structure interactions (FSI)** have well-defined kinematic and equilibrium compatibility conditions at the fluid-solid interface, but their implementation is very difficult (very few analytical solutions available).

- The coupling conditions are the equilibrium and kinematic compatibilities at the fluid–structure interface $\,\partial B^f\cap\partial B^s_t\,$

$$m{\sigma}^f \cdot m{n}^f = m{\sigma}^s \cdot m{n}^s$$
 equilibrium compatibility $m{v}^f = m{v}^s$ kinematic compatibility

Formulation of **fluid-solid interactions or fluid-structure interactions (FSI)** have well-defined kinematic and equilibrium compatibility conditions at the fluid-solid interface, but their implementation is very difficult.

- Very few analytical solutions available, using significant simplifying assumptions (this is in sharp contrast to contact mechanics).
- Otherwise, complex numerical formulations are used (e.g., ALE methods, that is arbitrary Lagrangian-Eulerian methods).

Fields of study within engineering:

- Tribology, bearings (*lubrication*, *friction* and wear).
- Porous media and poroelasticity. 🧹
- Particulate flow. 🔀
- Acoustic-structure interaction (structures: shells and plates).
- ... and many more areas of application.

Formulation of fluid-solid interactions or fluid-structure interactions (FSI) have well-defined kinematic and equilibrium compatibility conditions at the fluid-solid interface, but their implementation is very difficult.

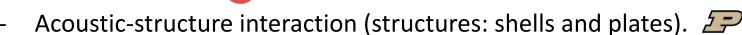
- Very few analy assumptions (
- Otherwise, col (e.g., ALE met

Fields of study wi

Tribology, beal

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2755-2788 Published online 7 January 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nag.2161

A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain

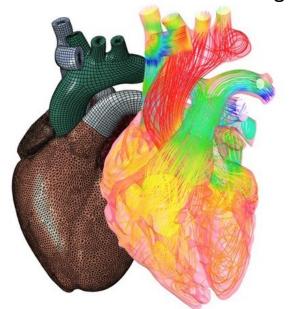

WaiChing Sun^{1,*,†}, Jakob T. Ostien¹ and Andrew G. Salinger²

Mechanics of Materials, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, U.S.A. ²Numerical Analysis and Application, Sandia National Laboratories, PO Box 5800, Albuquerque, NM, U.S.A.

Porous media and poroelasticity.

Particulate flow.

... and many more areas of application.

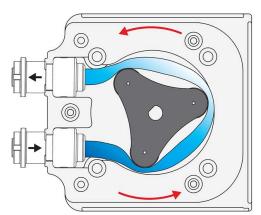

Formulation of **fluid-solid interactions or fluid-structure interactions (FSI)** have well-defined kinematic and equilibrium compatibility conditions at the fluid-solid interface, but their implementation is very difficult.

- Very few analytical solutions available, using significant simplifying assumptions (this is in sharp contrast to contact mechanics).
- Otherwise, complex numerical formulations are used (e.g., ALE methods, that is arbitrary Lagrangian-Eulerian methods).

In general, challenges are in coupling fluid flow with structural deformation in solids. Two approaches and countless different implementations:

- One-way coupling
- Two-way coupling (e.g., peristaltic pump, air flow around solar panel or airplane wing, stirred mixing vessel, cardiovascular modeling)

cardiovascular modeling



talking about large (elastic) deformation

peristaltic pump

air flow around an airplane wing

Fluid-solid interactions and FSI

Any questions?