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Abstract
We pursue a general investigation into structured bandits. Specifically, for an abstract space X , we
suppose a true reward function f resides in a known, but arbitrary, function class F . The algorithm
may then pull a number of arms x (i.e., query for the value f(x)), and thereby attempts to identify
an arm x̂ of near-maximum reward: f(x̂) ≥ supx f(x) − ε. While special cases of this problem
are well understood in the literature, our interest is in the possibility of a fully-general theory of
bandit learnability, analogous to the PAC model for classification: that is, a theory which precisely
characterizes which function classes F admit a learning algorithm guaranteed to identify a near-
optimal arm within a bounded number of pulls.

Our main result in this regard is an illuminating impossibility result. Namely, there exist well-
defined function classesF such that bandit learnability is undecidable within ZFC set theory. While
such undecidability results have previously been shown for a certain abstractly-defined learning
problem known as EMX, this is the first example of a natural or commonly-encountered learning
problem (i.e., bandits) for which learnability can be provably undecidable. Our proof is based
on establishing a (rather-sophisticated) equivalence between certain subfamilies of EMX learning
problems and corresponding constructed bandit problems.

Despite this general undecidability result, we also establish new general results in special cases.
Specifically, we characterize the optimal query complexity in the special case of binary-valued
reward functions in terms of a combinatorial complexity measure related to the teaching dimension.
We also present an extension to general bounded real-valued rewards, though in this case the upper
bound is not always optimal. In the process, we also establish a separation between learnability
by deterministic vs randomized learners. We instantiate the new complexity measures for several
important families of function classes F .
Keywords: Bandits, Undecidability, Learnability, Zeroth-order Optimization, Regret, Query Com-
plexity

1. Introduction

Within the field of learning theory, the PAC framework has been instrumental in providing an ab-
stract unifying perspective for understanding statistical learning of binary classifiers, and yields
beautifully concise characterizations of learnability and sample complexity. Prior to the proposal of
this framework (Vapnik and Chervonenkis, 1974; Valiant, 1984), the literature was largely a diverse
collection of special case analyses (e.g., Cover, 1965). Once the abstract PAC framework entered
the literature, such analyses could be unified, and further developments could easily be understood
via abstract complexity measures.

In contrast, the present-day literature on bandit learning still remains a fractured menagerie
of special cases (see Bubeck and Cesa-Bianchi, 2012), completely lacking any kind of abstract
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unifying theory (though there have been recent attempts toward trying to fill this gap, notably Foster,
Kakade, Qian, and Rakhlin, 2021a). In the bandit problem (in the well-specified and non-adversarial
setting), there is a set of armsX , and an unknown reward function f? : X → [0, 1]. The learner may
choose any arm x1 ∈ X to “pull” (i.e., query), receive a reward r1 (a random variable with mean
f?(x1)), choose another arm x2, receive a reward r2, and so on. The objective is either to identify an
arm x̂with Ef?(x̂) ≥ supx f

?(x)−ε or to achieve low expected regret T supx f
?(x)−E

∑T
t=1 rt =

o(T ). As a first step, in the present work, we will focus on the noise-free setting, where rewards for
arm x are equal to the value f?(x) of the reward function.

In analogy to the PAC framework, the natural formulation of an abstract theory of bandit learn-
ing is to consider a function classF : a set of possible reward functionsX → [0, 1]. We say the setF
is learnable in the bandit setting if there is an algorithmA and a functionM : (0, 1)→ N such that,
for any ε ∈ (0, 1), for any f? ∈ F , after pulling at most M(ε) arms, the bandit algorithm returns an
arm x̂ ∈ X with Ef?(x̂) ≥ supx f

?(x) − ε. This is analogous to the notion of learnability in the
PAC framework, based on having finite sample complexity.1 We note that this is also equivalent to
a zeroth-order optimization problem. We refer to the quantity M(ε) as the query complexity of the
algorithm A for the function class F .

Similarly, we can say a function class F is no-regret learnable in the bandit setting if there is an
algorithm A and a function R : N→ [0,∞) with R(T ) = o(T ) such that, for any reward function
f? ∈ F and any T ∈ N, T supx f

?(x) − E
∑T

t=1 rt ≤ R(T ). As we show below, a class F is
learnable if and only if it is no-regret learnable, so for our present discussion we will merely refer
to learnability (in the sense of the first definition above).

Given this definition of learnability, the main theoretical question in this framework is the fol-
lowing:

Which classes F are learnable in the bandit setting?

By far the most commonly studied function class is the setF = [0, 1]X of all functions. The first
analysis of this setting is usually credited to Robbins (1952), with the optimal regret first identified
by Lai and Robbins (1985). This function class gives rise to natural strategies for no-regret learning,
such as the popular Upper Confidence Bound (UCB) strategy (Agrawal, 1995), which elegantly
balances the opposing interests of exploration (searching for better arms) and exploitation (pulling
arms that are known to give high rewards).

At this point, some readers may be thinking, “If we already have a theory of bandit learning
for the class of all possible reward functions, isn’t that already the most general theory we could
ask for?” To answer this, note that learnability is a property of classes of functions. So a theory
of learnability that only covers a single class F of functions is actually not general at all, even if
that class is the largest possible class. Instead, we would want a theory of learnability to cover all
possible classes of functions. Analogously, in the PAC framework for classification, we could easily
prove theorems about learnability of the concept class of all possible binary functions X → {0, 1}.
But such theorems would be quite uninteresting. It would merely say that the class is learnable if
and only if the space X is finite, and that the sample complexity scales linearly in |X |. In contrast,

1. Note that, as in the abstract “VC theory” of PAC learnability, here we focus only on the rewards and number of
arms pulled, setting aside the more nuanced issue of the computational complexity of selecting the arms. Indeed,
our use of the term “algorithm” should be interpreted as merely requiring a sequence of mapping functions (pos-
sibly randomized), rather than intending some particular model of computation in which such a function could be
implemented.
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PAC/VC theory gives a more general theory of learnability, since it covers all possible concept
classes, showing that any well-behaved concept class is learnable if and only if its VC dimension
is finite (Vapnik and Chervonenkis, 1974). This way, even if the space X is infinite, there are
still many interesting concept classes that are PAC learnable, such as linear separators or neural
networks, rectangle classifiers, low-rank decision trees, etc. We know these are learnable because
of the general theory relating finiteness of the VC dimension to learnability. Moreover, even when
X is finite, having a sample complexity scaling linearly in |X | is often still unacceptable (e.g., when
X is the Boolean cube), and thus the more-general theory of PAC learning with general function
classes also provides a more satisfying quantitative analysis, replacing a linear dependence on |X |
with a linear dependence on the VC dimension of the concept class (the two coincide only for the
concept class of all binary functions).

Similarly, in the bandit setting, it is an easy observation that the class F = [0, 1]X of all func-
tions is only learnable if X is finite, and indeed that the query complexity, M(ε), scales linearly
in |X |. This remains as unsatisfying of a theory in the bandit setting as in the classification set-
ting. Thus, a general theory of learnability requires us to broaden our perspective, to allow for any
function class F .2

There have been a few other function classes commonly studied in the literature, beside the class
[0, 1]X of all functions. Perhaps the next most studied class F is the class of linear functions on a
compact set X ⊂ Rd (see Bubeck and Cesa-Bianchi, 2012, Chapter 5). In this case, the dependence
on |X | is replaced by a dependence on d, the dimension. Another family of function classes studied
in a substantial number of works are the classes F of smooth functions on a metric space X (Klein-
berg, 2004; Kleinberg, Slivkins, and Upfal, 2008; Bubeck, Munos, Stoltz, and Szepesvári, 2011;
Minsker, 2013) (typically, Lipschitz or Hölder classes). In this case, the optimal query complexity
is quantified in terms of the smoothness parameters for the functions in F together with a notion of
dimension for the metric space X . Our general approach below may be viewed as related to certain
techniques from some of these works, in that they involve estimation of level sets as a component
in the optimization algorithm (see e.g., Minsker, 2013).

A somewhat more-recent attempt at a more-general perspective, allowing a broader family of
function classes F , is the work of Hashimoto, Yadlowsky, and Duchi (2018). Similarly to some
of the above works on smoothness, the essential strategy of Hashimoto, Yadlowsky, and Duchi
(2018) is to reduce the bandit problem to the problem of classifying points in X by whether they
are included in a level set of the reward function f?. Their strategy requires this classification to
be essentially perfect, so that they identify a subset of X that definitely contains all points where
f? is greater than some threshold τ , which they adjust over time in their algorithm. Based on this
approach, they derive a query complexity bound based on the VC dimension and disagreement
coefficient of the level sets of functions in F . Their general theorem is restricted to the case of finite
X , and indeed their query complexity explicitly depends on |X |. Nevertheless, their approach and
techniques hint at a more general theory, for which they are able to state some special cases.

Very recently, a series of preprints by Foster, Kakade, Qian, and Rakhlin (2021a); Foster,
Golowich, Qian, Rakhlin, and Sekhari (2022); Foster, Golowich, and Han (2023) have explored
an impressively general approach to bandit learning they term Estimation-to-Decisions. Similar to
the present work, their interest is in approaching a general theory of bandit learnability and learn-

2. Indeed, this same issue propagates to related settings, such as contextual bandits and reinforcement learning, where
even in the works proposing general theories allowing general classes of reward functions, the regret bounds still
exhibit a dependence on the number of possible actions (e.g., Foster, Rakhlin, Simchi-Levi, and Xu, 2021b).
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ing complexity (either query complexity or regret). Their general analysis is expressed in terms
of a quantity they term the decision estimation coefficient. We discuss this work in detail below,
but for now mention that there remain gaps between their upper and lower bounds, both quantita-
tive and qualitative, with potentially infinite gaps in query complexity in some cases. Thus, while
impressively general, their work does not provide a complete characterization of bandit learnability.

Each of the above particular families of function classes has required a separate analysis. In the
present work, we ask whether it is possible to answer the question of learnability in a fully general
theory that captures all function classes F : that is, whether it is possible to formulate a unified
abstract theory of bandit learnability.

Main Result and Interpretation: As the main result of this work, we find that, in a sense, such
a fully general theory is impossible: precisely, we prove that bandit learnability can be undecidable
within the ZFC axioms. Intuitively, what this means is that the above state of affairs in the literature
is, in a sense, unavoidable: that is, it seems likely that there simply cannot be a characterization of
bandit learnability that is simultaneously complete, explicit, and simple, since any complete charac-
terization of bandit learnability would need to be so complicated or implicitly-specified as to even
be sensitive to esoteric considerations in set theoretic axioms. In light of this fact, it seems the
direction of the literature may be forced to pivot away from seeking fully-general theories of bandit
learnability, rather focusing on identifying important subfamilies of bandit learning problems for
which complete characterizations of learnability are possible. In this work, we provide one (ex-
tremely simple) illustrative example of this: namely, binary-valued bandits. In addition to being an
important observation for the study of bandit learnability, we note that our undecidability result is
also the first example of a natural or commonly-encountered learning problem that can be provably
undecidable, and as such also advances our understanding of undecidability of learning problems
more broadly.3

1.1. Main Results

We formally state the main result of this work as follows.

Theorem 1 For X = R, there is a bandit problem (X ,F) such that, whether or not (X ,F) is
learnable is independent of the ZFC axioms.

The interpretation of this is that there are concretely-definable bandit learning problems for
which, if we augment the ZFC axioms with certain additional (compatible) axioms, then the problem
is learnable, whereas if we augment ZFC with certain other (compatible) axioms, then the problem
is not learnable. Thus, any theory based purely on ZFC cannot provide an answer to the learnability
of such classes, and hence cannot be fully general.

Overview of the Proof: A detailed outline of the proof of Theorem 1 is provided in Section 2,
followed by the formal proof in Section 3. Here we provide a brief non-technical overview. The
broad approach of the proof of Theorem 1 is to build on earlier work of Ben-David, Hrubes, Moran,
Shpilka, and Yehudayoff (2019a), who argued undecidability of learnability for an instance of a

3. Previous work of Ben-David, Hrubes, Moran, Shpilka, and Yehudayoff (2019a) found that an abstract problem they
call EMX learning is undecidable. We discuss this at length below. Other recent works of Hanneke, Kontorovich,
Sabato, and Weiss (2021) and Caro (2021) show a number of learnability questions are undecidable or unprovable
within ZFC. However, the natures of those results are fundamentally different, as we discuss at length in Section 1.7.
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learning problem they call EMX, for Expectation Maximization. Our proof of Theorem 1 provides
a sophisticated construction of a bandit problem corresponding to any given EMX problem from a
subfamily studied by Ben-David et al. (2019a), known as union-bounded classes. By establishing
equivalences of learnability between corresponding instances from these two subfamilies of learning
problems, the undecidability result of Ben-David et al. (2019a) carries over to the bandit setting.

The relation between the EMX and bandit problems at first seems non-obvious. EMX is a
learning problem aiming to identify a binary function ĥ in a class H guaranteeing EX∼P [ĥ(X)] ≥
suph∈H EX∼P [h(X)] − ε, based on a number N(ε) of i.i.d. samples X1, . . . , XN(ε) from an un-
known distribution P . In contrast, bandit learning aims to identify an arm x̂ ∈ X guaranteeing
reward f?(x̂) ≥ supx f

?(x) − ε, based on observed rewards f?(xt) for adaptively chosen arms
x1, . . . , xn, as the only source of information about the unknown reward function f? ∈ F . The
basic idea in our construction is that, for each possible distribution P in the EMX problem, we
define an appropriate reward function in the corresponding bandit problem, so that each h ∈ H has
a corresponding arm xh in the bandit problem with f?(xh) ∝ EX∼P [h(X)] +O(1). This sets up a
correspondence between the unknown objects in the two problems.

However, there are several complicating factors, which require a significantly more nuanced
construction. To convert a learner for the EMX problem into a learner for the bandit problem, we
need the ability to generate i.i.d. samples from the distribution P corresponding to the bandit prob-
lem’s reward function. The bandit problem (as studied here) has inherently deterministic rewards
f?(x), which presents a challenge. We must therefore rely on the randomness of the learner to
generate these samples. Toward this end, we construct an additional set of arms xw whose f?(xw)
reward values are such that, if a learner randomly samples one of these arms (with a carefully-
chosen distribution), the reward value can be transformed to the value of a random sample from
the distribution P (or a distribution close to P ). On the other hand, to convert a bandit learner into
an EMX learner, we must be careful to ensure that there is no additional structure in the bandit
problem beyond this ability to sample from P : i.e., even for a learner that adaptively chooses its
queries among xw arms, we can still simulate the f?(xw) reward values using only the i.i.d. samples
available in the EMX problem. To achieve this, we in fact construct an entire family of reward func-
tions corresponding to each P , in a careful way guaranteeing that if we choose a reward function
at random from this family, the rewards observed by the learner have an induced distribution that is
again nearly the same as i.i.d. samples from P .

In addition to the above, another subtlety arising in establishing this second direction of the
equivalence is that the arms xh must have precise reward values f?(xh) in order to maintain (for
the purpose of the first direction) the exact correspondence between the near-maximality of the
reward f?(x̂) of the returned arm x̂ = xĥ in the bandit problem and the near-maximality of the
score EX∼P [ĥ(X)] of the corresponding ĥ ∈ H for the EMX problem (noting that, since we are
concerned with learnability, we need a single ε-independent construction F that establishes the cor-
respondence simultaneously for all ε ∈ (0, 1)). The problem with this is that, since these f?(xh)
rewards must have a precise (hence non-random) correspondence to the scores EX∼P [h(X)], if
the bandit learner attempts to pull an arm xh in the process of learning (i.e., not merely as its return
value), we have no way to simulate the exact reward value f?(xh) using only the i.i.d. samples avail-
able in the EMX problem; for instance, since we have no restrictions on the bandit learner in this
reduction, we cannot assume it would respond reasonably to replacing f?(xh) by a random approx-
imation based on estimating EX∼P [h(X)] from a finite sample. While this issue may potentially be
unsolvable for general EMX problems, we are able to address the issue in the case of a subfamily
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of EMX problems, known as union-bounded. In this case, it suffices to convert the bandit learner
into a weak monotone compression scheme (see below for the definition). We achieve the latter by
effectively suppressing all information from these precise reward values f?(xh) in the execution of
the bandit learner, arguing that its sequence of queried arms can still be used to construct such a
compression scheme. This is by far the most technically involved portion of the argument, requir-
ing a careful breakdown of cases and events in the (randomized) executions of the bandit learner, to
eventually identify a strict subset of samples that will be (non-randomly) mapped to a function inH
whose support includes the entire data set. With this monotone compression scheme in hand, we can
then construct an EMX learner. Altogether, this establishes the equivalence of EMX learnability of a
union-bounded class and bandit learnability of the constructed corresponding bandit problem. Not-
ing that the undecidability of EMX learnability was indeed established for a union-bounded class
H, the above equivalence therefore extends the undecidability of EMX learnability to the bandit
setting.

Undecidability of No-Regret Learnability: Although Theorem 1 is expressed in the PAC / opti-
mization variant of bandit learning, we also prove the following equivalence to no-regret learnability.

Theorem 2 Any (X ,F) is learnable in the bandit setting if and only if it is no-regret learnable in
the bandit setting.

Thus, Theorem 1 also establishes undecidability of no-regret learnability in the bandit setting.

Corollary 1 For X = R, there is a bandit problem (X ,F) such that, whether or not (X ,F) is
no-regret learnable is independent of the ZFC axioms.

1.2. Results for Binary-valued Rewards

While Theorem 1 indicates that a fully general theory of bandit learnability is essentially impossible
(within ZFC), it leaves open the possibility of interesting special cases of families of bandit learning
problems having general characterizations of learnability for function classes in the family. Indeed,
as discussed above, Theorem 1 might be interpreted as revealing that there cannot be a fully gen-
eral characterization of bandit learnability which is both simple and explicit (i.e., easy to interpret
or evaluate), since any characterization would necessarily be sensitive to nuances of set-theoretic
axioms. Faced with this situation, we suggest that the aim of the literature on bandit learnabil-
ity, and phrasing of results therein, should pivot toward identifying and understanding interesting
precisely-defined families of bandit learning problems for which simple and explicit characteriza-
tions of bandit learnability are possible.

To complement the above negative result, we develop one (incredibly simple) illustrative exam-
ple of such a family, for which a simple complete characterization of bandit learnability is possible:
namely, the case of binary-valued reward functions, that is, the family of all function classes F
where every f ∈ F satisfies image(f) ⊆ {0, 1}. We refer to such (X ,F) as a binary-valued
bandit problem. For this special case, we characterize which classes are learnable, and moreover,
do so by defining a simple dimension which characterizes learnability in the bandit setting with
binary-valued rewards. More specifically, we consider deterministic and randomized learners sepa-
rately, and characterize the optimal query complexity for both cases. Interestingly, this also reveals
a separation between the two: i.e., there are binary-valued bandit problems that are learnable by
randomized learners but not learnable by deterministic learners. This is noteworthy, since there are
some bandit learning algorithms in the literature that are deterministic (e.g., UCB).
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Deterministic learners: To characterize the optimal query complexity of deterministic learning,
we consider the following definition.

Definition 2 Define the zero-teaching dimension of F , denoted τ0
F , as the smallest t ∈ N such that

there exist x1, . . . , xt ∈ X with
min

f∈F\{0}
max
1≤i≤t

f(xi) = 1,

where 0 is the all-zero function (which may or may not be in F). If no such finite t exists, define
τ0
F =∞.

The name zero-teaching dimension stems from a relation to the literature on teaching complexity
(Goldman and Kearns, 1995), where τ0

F can equivalently be defined as the teaching dimension of 0
with respect to the class F ∪ {0}. In words, τ0

F is the smallest number of points such that one of
them must have f? value 1, if there exists any point in X of value 1. We have the following result.

Theorem 3 Any binary-valued bandit problem (X ,F) is learnable by a deterministic algorithm
if and only if τ0

F < ∞. Moreover, the optimal query complexity M(ε) achievable by deterministic
algorithms satisfies, ∀ε ∈ (0, 1), M(ε) = τ0

F − 1.

Indeed, it is rather obvious that the optimal query complexity for deterministic learners is is Θ(τ0
F ).

Randomized learners: On the other hand, to understand learnability of binary-valued bandits by
randomized learners, we consider the following definition.4

Definition 3 Define the maximin volume of F , denoted by σ̃F , as

σ̃F = sup
P

inf
f∈F\{0}

P (x : f(x) = 1),

where P ranges over all probability measures on X .

We show that this simple quantity determines learnability in binary-valued bandit problems.

Theorem 4 Any binary-valued bandit problem (X ,F) is learnable if and only if σ̃F > 0. More-
over, the optimal query complexity M(ε) satisfies

1− ε
σ̃F

− 1 ≤M(ε) ≤
⌈

1

σ̃F
ln

(
1

ε

)⌉
− 1.

While the above quantity gives a simple characterization of binary-valued bandit learnability,
it turns out a related more-involved quantity provides an exact quantitative characterization of the
query complexity. Specifically, consider the following definition.

4. To be formal in specifying what kind of randomization is allowed, we suppose there is a σ-algebra defined on X ,
and for any given reward function the randomized learner’s sequence of queries and return value should be jointly
measurable under the product σ-algebra. Since the σ-algebra also informs which probability measures are valid in
Definitions 3 and 4, the results are valid for any choice of this σ-algebra.
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Definition 4 Define the randomized zero-teaching dimension of F , denoted τ̃0
F (ε), as the smallest

t ∈ N such that, there exists a sequence x1, . . . , xt of X -valued random variables such that, ∀f ∈
F \ {0},

P(∃i ∈ {1, . . . , t} : f(xi) = 1) ≥ 1− ε.

If no such finite t exists, define τ̃0
F (ε) =∞.

These two quantities are related via the following basic lemma.

Lemma 5 If σ̃F > 0, then
1− ε
σ̃F

≤ τ̃0
F (ε) ≤

⌈
1

σ̃F
ln

(
1

ε

)⌉
.

Moreover, σ̃F = 0 if and only if τ̃0
F (ε) =∞.

As with the result for deterministic learners above, the fact that τ̃0
F (ε) characterizes the optimal

query complexity is rather obvious, given the simplicity of the binary-valued bandit scenario. Nev-
ertheless, the result sheds light on the existence of special subfamilies of bandit problems which
seem to avoid the negative results discussed in the preceding sections. We have the following result.

Theorem 5 Any binary-valued bandit problem (X ,F) is learnable if and only if τ0
F (ε) < ∞ for

all ε > 0. Moreover, for all ε ∈ (0, 1), the optimal query complexity M(ε) satisfies

M(ε) = τ̃0
F (ε)− 1.

Gaps between deterministic and randomized learnability: Interestingly, the optimal query
complexity of randomized learners can be vastly smaller than that of deterministic learners. In-
deed, there are function classes that are not even learnable by deterministic learners in the bandit
setting, but which are learnable with a modest query complexity by randomized learners.

Example 1 As a simple example of this, consider X = [0, 1] (equipped with the σ-algebra of
Lebesgue-measurable sets), and the class F of all f : [0, 1]→{0, 1} having |{x : f(x) = 0}| <∞.
Note that τ0

F =∞, since for any finite sequence x1, . . . , xt, there is a function 1[0,1]\{x1,...,xt} ∈ F
which is 0 on x1, . . . , xt (and 1 everywhere else). On the other hand, τ̃0

F (ε) = 1 for any ε ∈ (0, 1),
since taking x1 ∼ Uniform(0, 1) yields P(f(x1) = 1) = 1 for any f ∈ F .

1.3. Results for General Real-valued Rewards

We can also extend the above results to provide general upper bounds on the query complexity of
bandit learning for real-valued reward functions. In this case, in light of Theorem 1, we may not
hope for a concise upper bound that is always optimal, since any optimal characterization of query
complexity would need some aspect that varies with different additions to ZFC, and hence we would
expect its definition to be somewhat involved. Nonetheless, we propose general analyses, which
provide upper bounds on the query complexity of bandit learning, for deterministic and randomized
learners, respectively, and which we instantiate for several concrete function classes below.
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Deterministic learners: We begin with a complexity measure for deterministic learners. For any
c ∈ [0, 1], define

Fc =

{
f ∈ F : sup

x∈X
f(x) ≥ c

}
.

We propose the following definition, representing an extension of the zero-teaching dimension
of F to real-valued functions, based on the level sets of the functions..

Definition 6 For any ε ∈ (0, 1), define the level-set teaching dimension τF (ε) as the smallest t ∈ N
such that, for any c ∈ [0, 1] with Fc 6= ∅, there exist x1, . . . , xt ∈ X with

inf
f∈Fc

max
1≤i≤t

f(xi) ≥ c− ε.

If no such finite t exists, define τF (ε) =∞.

This quantity is directly inspired by applying the reasoning of the τ0
F complexity for binary-

valued rewards, extended to the real-valued case by considering the level sets of the functions in the
class. We have the following result.

Theorem 6 (Informal) Any bandit problem (X ,F) has query complexity M(ε) for deterministic
learners satisfying M(ε) = O(τF (ε)/ε).

While this upper bound is not always optimal (which is not surprising, in light of Theorem 1),
we do instantiate the bound for various interesting examples below in Section 1.4.

Randomized learners: As we did for binary bandits, we can also extend the analysis to random-
ized learners, which can provide significantly stronger guarantees.

Definition 7 For any ε ∈ (0, 1), define the maximin level-set volume of F , denoted by σ̃F (ε), as

σ̃F (ε) = sup
P

inf
c∈(0,1]

inf
f∈Fc

P (x : f(x) ≥ c− ε),

where P ranges over all probability measures on X .

For simplicity, if Fc = ∅, we define inff∈Fc to always evaluate to 1.

Theorem 7 For any bandit problem (X ,F), the optimal query complexity M(ε) satisfies

M(ε) ≤ 2

ε

⌈
1

σ̃F (ε/4)
ln

(
2

ε

)⌉
.

As we did for binary bandits, we prove this by first relating σ̃F (ε) to a more-involved but more-
directly relevant quantity, defined as follows.

Definition 8 For any ε, δ ∈ (0, 1), define the randomized level-set teaching dimension τ̃F (ε, δ) as
the smallest t ∈ N such that, for any c ∈ [0, 1] with Fc 6= ∅, there exists a sequence x1, . . . , xt of
X -valued random variables with

inf
f∈Fc

P
(

max
1≤i≤t

f(xi) ≥ c− ε
)
≥ 1− δ.

For any given c, the sequence x1, . . . , xt of random variables satisfying the above requirement is
called a randomized (c− ε, δ)-level specifying set for Fc. If no such t exists, define τ̃F (ε, δ) =∞.
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The quantities τ̃F (ε, δ) and σ̃F (ε) are related via the following lemma.

Lemma 9 For any ε, δ ∈ (0, 1),

1− δ
σ̃F (ε)

≤ τ̃F (ε, δ) ≤
⌈

1

σ̃F (ε)
ln

(
1

δ

)⌉
.

Due to Lemma 9, to prove Theorem 7, it suffices to prove the following bound in terms of τ̃F (ε, δ).

Theorem 8 For any bandit problem (X ,F), the optimal query complexity M(ε) satisfies

M(ε) ≤ 2τ̃F (ε/4, ε/2)

ε
.

1.4. Examples

To begin, we consider the well-studied case of F the set of all functions X → [0, 1]. In this case,
our proposed dimension τF (ε) captures the well-known fact that the optimal query complexity is
linear in |X |.

Example 2 Consider any finite X and F = [0, 1]X , the set of all functions X → [0, 1]. In this
case, τF (ε) = |X |. To see this Note that, for any X ′ that is a strict subset of X , there is a function
f ∈ F equal 1X\X ′: that is, f is 0 on X ′ and 1 on X \ X ′. Thus, for any c ∈ (ε, 1], this function
f is in Fc (its maximum value is 1 ≥ c), and yet its maximum value on X ′ is 0 < c − ε. Since
the requirement in Definition 6 is always satisfied for t = |X | (by definition of Fc), this implies
τF (ε) = |X |.

Next we consider the (also well-studied) case of F the set of linear functions

Example 3 Consider X = Sd, the origin-centered unit sphere in Rd, for some d ∈ N, and F =
{x 7→ w>x : w ∈ Sd}. In this case, τF (ε) = ε1−d.

Every f ∈ F has supx f(x) = 1. So Fc = F . Consider then the most-constraining case for the
requirement in Definition 6: c = 1. Any x1, . . . , xt satisfying this requirement must be an ε-cover
of the angles, hence has size at least ε1−d.

Interestingly, this is an example where τF (ε) does not recover the optimal query complexity. In
particular, it is known that O(d) query complexity is achievable (Bubeck and Cesa-Bianchi, 2012).
Indeed, this is not hard to see. Any linearly independent x1, . . . , xd will uniquely identify the reward
function, so that we can output the precise maximizing arm.

We remark that, at the expense of a somewhat more-involved definition of the complexity mea-
sure, we can define a more-advanced variant of τF (ε) that captures this example as well. Specif-
ically, rather than requiring the existence of a fixed sequence x1, . . . , xt in Definition 6, we could
instead define a set of branching sequences: x(), x(y1), x(y1,y2), . . . , x(y1,...,yt−1), such that for ev-
ery f ∈ Fc, inductively letting y1 = f(x()) and yi = f(x(y1,...,yi−1)) for i ≥ 2, we have
max{f(x()), f(x(y1)), . . . , f(x(y1,...,yt−1))} ≥ c − ε. Defining τ̃F (ε) as the smallest t for which
such a set of branching sequences exists, for every c ∈ [0, 1], we can replace τF (ε) with τ̃F (ε) in
Theorem 6 and it will remain valid. Unlike τF (ε), this complexity τ̃F (ε) captures the fact that the
bandit learning algorithm may select its exploration points adaptively: i.e., that some information
can be extracted even from points that do not yield a new best-arm-so-far, to inform which arm to

10
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try next. Indeed, this modified definition of the complexity measure is (almost tautologically) an
optimal characterization of query complexity for any bandit problem (X ,F).

Moreover, for the linear bandit problem, it is clear that τ̃F (ε) ≤ d + 1, so that this complexity
measure captures the optimal query complexity of linear bandits.

Example 4 Let X = {x ∈ Rd : ‖x‖ ≤ 1} be the unit Euclidean ball in Rd for some d ∈ N, and
fix any L ≥ 1 and α ∈ (0, 1], and define the class of Hölder smooth functions:

F =

{
f : sup

x,x′∈X

|f(x)− f(x′)|
‖x− x′‖α

≤ L

}
.

In this case, τF (ε) =
⌈(

L
ε

)d/α⌉
. For f ∈ Fc, it suffices to get a point x′ within distance (ε/L)1/α

of the point x having f(x) ≥ c to guarantee f(x′) ≥ c − ε. Thus, choosing an (ε/L)1/α-cover
of X suffices to satisfy the criterion in Definition 6. The stated expression on τF (ε) is the size of
such a cover. On the other hand, any smaller set of points cannot be an (ε/L)1/α cover, so that for
such a smaller set x1, . . . , xt there exists a point x ∈ X with none of x1, . . . , xt within distance
(ε/L)1/α, and we can find a function f ∈ Fc with f(x) = c and every other point x′ defined as
max{c− L‖x′ − x‖α, 0}, in which case none of x1, . . . , xt will have f(xi) ≥ c− ε.

We also remark that this value of τF (ε) matches the known query complexity of this problem
(e.g., Kleinberg, Slivkins, and Upfal, 2008).

1.5. Relation to the Disagreement-Based Approach

The analysis of Hashimoto, Yadlowsky, and Duchi (2018) expresses a result in terms of the disagree-
ment coefficient, a quantity originally introduced in (Hanneke, 2007). Specifically, for X a finite set
and any function class F , they let H = {hf,c : f ∈ F , c ∈ [0, 1]}, where hf,c(x) = 1[f(x) > c] is
a superlevel set of f .5 Let PX be a uniform distribution over X , and let6

θ = sup
h∈H

sup
r≥1/|X |

PX(DIS(B(h, r)))

r
,

where B(h, r) = {h′ ∈ H : PX(x : h′(x) 6= h(x)) ≤ r} is the r-ball centered at h, and
DIS(B(h, r)) = {x : ∃h′ ∈ B(h, r), h′(x) 6= h(x)} is the region of disagreement of the r-ball.
Additionally, let V denote the VC dimension of H (Vapnik and Chervonenkis, 1974). They pro-
pose an algorithm which maintains weights p(t)(x) (summing to 1) over the arms x ∈ X in rounds
t = 1, . . . , T . On each round it queries n arms. Their conclusion, after T rounds, is expressed as
a lower bound on p(T )(x∗), where x∗ = argmaxx∈X f

?(x). Specifically, in their Theorem 3, they
state such a lower bound in terms of T , under a condition that n be of a given sufficient size, and
the bound is guaranteed to be valid with probability at least 1 − δ. While such a result is essen-
tially of a different type than the PAC-style query complexity bounds studied here (they are more
closely analogous to “Exact” or “PExact” learning guarantees), they have an immediate implica-
tion for the type of query complexity studied here: namely, we can consider the implication for
the number of queries sufficient for their algorithm to guarantee p(T )(x∗) > 1

2 , so that choosing

5. They use sublevel sets, but this is clearly equivalent.
6. They considered a supremum over all r > 0, but for finiteX their results remain valid with merely r ≥ 1/|X |, which

never increases the value of θ, yet makes it never larger than |X |.

11



HANNEKE YANG

x̂ = argmaxx p
(T )(x) will achieve f?(x̂) = supx f

?(x) with probability at least 1 − δ. Setting
δ = ε, this implies E[f?(x̂)] ≥ supx f

?(x) − ε. After T rounds, the total number of queries by
their algorithm is nT . Setting their lower bound on p(T )(x∗) to be greater than 1

2 and minimizing
the value of nT over the various parameters in their Theorem 3 subject to this constraint, we arrive
at a guarantee on the query complexity of their algorithm:

O

(
θ

(
V log(θ) + log

(
1

ε

)
+ log log(|X |)

)
log(|X |)

)
.

We can recover a nearly-identical result as an (often loose) upper bound on the query complexity
in our Theorem 6. We first note a relation between τF (ε) and θ. To start, notice that τF (ε) is upper
bounded by TD(H), where TD(H) is the teaching dimension of the superlevel sets H (Goldman
and Kearns, 1995). To see this, note that every f ∈ F has hf,1(x) = 0 everywhere, since f is
bounded by 1. Thus, H contains the everywhere-zero function 0. Thus, for any c ∈ [0, 1], the
teaching dimension of {0} ∪ {hf,c−ε : f ∈ F} is at most TD(H) (by monotonicity of TD). Let
x1, . . . , xt be a minimal set such that any function in {hf,c−ε : f ∈ F} with value 0 on all of
x1, . . . , xt must be equal 0 on all of X : note that

t ≤ TD({0} ∪ {hf,c−ε : f ∈ F}) ≤ TD(H).

Then every f ′ ∈ F for which hf ′,c−ε is not everywhere 0 must have some xi with hf ′,c−ε(xi) = 1:
that is, f ′(xi) ≥ c− ε. Hence, x1, . . . , xt satisfy the requirement in Definition 6. Since this is true
for every c ∈ [0, 1], we conclude that τF (ε) ≤ TD(H).

We conclude by recalling a relation between TD(H) and θ from Theorem 5 of Wiener, Han-
neke, and El-Yaniv (2015), which implies TD(H) = O(θ(V log(θ) + log log(|X |)) log(|X |)). For
completeness, we include a brief proof here. Let h∗ ∈ H be any function with teaching dimension
TD(h∗,H) = TD(H). Consider randomly sampling with replacement from Uniform(X ) to pro-
duce a sequence of random samples x̃1, x̃2, . . .. For T = O(|X | log(|X |)), with probability at least
1/2, we will have at least one copy of every x in X within x̃1, . . . , x̃T . Let V0 = H and for each
t ∈ {1, . . . , T}, let Vt = {h ∈ H : ∀i ≤ t, h(x̃i) = h∗(x̃i)} and Qt = 1[x̃t ∈ DIS(Vt−1)]. This
sequence of Qt values describes the behavior of the well-studied CAL active learning algorithm
(Cohn, Atlas, and Ladner, 1994). A well-known bound on the sum of Qt values, established by
Hanneke (2011, 2014), shows that, with probability at least 3/4,

T∑
t=1

Qt = O(θ(V log(θ) + log log(|X |)) log(|X |)).

Moreover, since every t with x̃t /∈ DIS(Vt−1) has full agreement with h∗(x̃t) within Vt−1, we
inductively have that equivalently Vt = {h ∈ H : ∀i ≤ t with Qi = 1, h(x̃i) = h∗(x̃i)}. Thus,
with probability at least 1/4 (by the union bound), the set VT is the set of functions in H that agree
with h∗ on a set S of size O(θ(V log(θ) + log log(|X |)) log(|X |)) (namely, the x̃i points having
Qi = 1), and every point x in X appears at least once in the sequence x̃1, . . . , x̃T . The latter implies
VT = {h∗}. Thus, S is a teaching set for h∗ with respect to H, hence has size at least TD(H) (by
our choice of h∗). Altogether, we have

τF (ε) = O(θ(V log(θ) + log log(|X |)) log(|X |)).
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This indicates that our analysis is essentially no worse than that of Hashimoto, Yadlowsky, and
Duchi (2018) (up to log factors). On the other hand, one can give simple examples where the result
in our Theorem 6 is significantly smaller than the result of Hashimoto et al. (2018).

Example 5 Fix any x0 ∈ X , and consider the set F of functions that have f(x0) = 1, and
otherwise can take any values on X \ {x0}. Then τF (ε) = 1, since x0 always satisfies the criterion
in Definition 6. On the other hand, θ = |X | − 1 and V = |X | − 1, so that the bound of Hashimoto,
Yadlowsky, and Duchi (2018) is Ω(|X |2 log(|X |)). Thus, our analysis based on τF (ε) can offer an
arbitrarily strong improvement over the result of Hashimoto, Yadlowsky, and Duchi (2018).

As an additional remark, we can also extend Example 1 to reveal a large gap between the result
of Hashimoto, Yadlowsky, and Duchi (2018) and the optimal query complexity from Theorems 4
and 5 for binary-valued bandits. Specifically, consider the following example.

Example 6 Consider any finite set X and let F be the set of all function f : X → {0, 1} having∑
x∈X f(x) ≥ (1/2)|X |. For this example, recalling the notation from Section 1.5, for h = 1 the

constant-1 function (which is an element of H in this example), any r ∈ (0, 1/2) has F ⊆ B(h, r),
and hence DIS(B(h, r)) = X , so that θ = |X |. Since the VC dimension of H is (1/2)|X |
here, the result of Hashimoto, Yadlowsky, and Duchi (2018) only provides a query complexity
Ω(|X |2 log(|X |)). On the other hand, letting x ∼ Uniform(X ), any f ∈ F has P(f(x) = 1) ≥ 1

2 ,
so that σ̃F ≥ 1

2 . Together with Theorem 4, we see that F is in fact learnable with a modest query
complexity O

(
log
(

1
ε

))
that is independent of |X |.

1.6. Comparison to the Decision-Estimation Coefficient Approach

A recent impressively thorough preprint of Foster, Kakade, Qian, and Rakhlin (2021a) attempts to
approach the problem of providing a general characterization of bandit learnability (and indeed,
even broader families of decision problems, including contextual bandits and reinforcement learn-
ing), in terms of a quantity they term the Decision-Estimation Coefficient (DEC). The definition
of the DEC is in fact partly analogous to the definition of the disagreement coefficient (see Sec-
tion 1.5)7, though with important modifications making it more suitable for reward-maximization
decision problems.

For the case of bandit learning, Foster, Kakade, Qian, and Rakhlin (2021a) formulate a general
framework, which allows for noisy bandit problems. Specifically, they specify a bandit problem, for
a space of arms X , via a model classM: a set of functions M : X → ∆(R), where ∆(R) denotes
the set of probability measures on R. Their underlying assumption is that there exists M? ∈ M
representing the true reward distribution: that is, a bandit learner that pulls an arm xt ∈ X on round
t receives reward rt sampled from the distribution M?(xt) (where rt is conditionally independent
of all past rewards, given xt). The objective remains to obtain a near-maximum expected reward
of the returned arm x̂ (where this expectation is over both the randomness of the algorithm and
the randomness of the reward that would be received upon pulling arm x̂). Such a model classM
naturally induces a function class F = {fM : M ∈ M}, where fM (x) = Er∼M(x)[r], so that
the objective may be stated as achieving E[fM

?
(x̂)] ≥ supx f

M?
(x) − ε. Foster et al. (2021a) are

largely focused on achieving low regret under such model classes, though their results also translate

7. Indeed, Foster, Kakade, Qian, and Rakhlin (2021a) prove formal relations between these quantities.
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naturally to the reward-maximization setting as we have chosen to focus in the present work (see
Section 4).

They propose a generic strategy they term Estimation-to-Decision (E2D), which iteratively
prunes the model class essentially based on estimates of the distance of each model to M?: that
is, they prune a model M from the class if a uniform confidence bound on its (Hellinger) distance
to M? reveals it is far from M? (in expectation, under a distribution on X constructed in the al-
gorithm). They then provide both an upper bound on the regret of E2D and a lower bound on the
minimax optimal regret, in terms of (respectively) two variants of the Decision-Estimation Coeffi-
cient decγ . Without getting into too many fine details of these variations (which are not particularly
consequential for the purpose of our comparison here), the essential definition is as follows. For
γ > 0, and any model M̄ ,

decγ(M, M̄) = inf
p∈∆(X )

sup
M∈M

Ex∼p
[
sup
x′
fM (x′)− fM (x)− γD2

H(M(x), M̄(x))

]
,

where D2
H(P,Q) =

∫ (√
dP −

√
dQ
)2

is the Hellinger distance between distributions (supposing
both are absolutely continuous with respect to some reference measure).

We summarize their upper and lower bounds, in an oversimplified form, for the purpose of
comparison; the interested reader is referred to the original source for the formal statements. Their
lower bound on the minimax regret, up to time T , is of a form roughly

sup
γ>0

min

{
sup
M̄∈M

decγ(M, M̄)T, γ

}
. (1)

Complementing this, their upper bound on the regret of E2D is roughly of the form

inf
γ>0

max

{
sup

M̄∈co(M)

decγ(M, M̄)T, γ · est(M, T )

}
, (2)

where co(M) is the set of mixtures of models inM, and est(M, T ) := infε>0 logN (M, ε)+ε2T is
a measure of the complexity of uniform estimation of distances between models, whereN (M, ε) is
a bound on the ε2-covering number ofM under uniform Hellinger distance: supxD

2
H(M(x),M ′(x)).

Their theory offers some refinements of this upper bound as well, which do not significantly change
our comparison below.

While these results are quite general, and certainly cover many interesting scenarios not ad-
dressed in the present work (e.g., stochastic rewards), we note here that they are not particularly
well-suited to handling the case of deterministic rewards, which is the main focus of the present
work. In particular, they do not capture the basic results of Section 1.2 on binary bandits.

To see this, in the case of the upper bound (2), note that for any class F of binary bandits, the
corresponding model class M = {Mf : f ∈ F} consists of models Mf which, for any arm x,
simply have a single point mass at f(x). Thus, since any distinct Mf ,Mf ′ ∈ M have some x with
f(x) 6= f ′(x), we may observe that supxD

2
H(M(x),M ′(x)) = 1. Therefore, any infinite class

F of binary bandits have a corresponding model classM with N (M, ε) = ∞ for all ε > 0, and
hence est(M, T ) =∞. This means the upper bound (2) is always vacuously infinite for any infinite
binary bandit classF . A simple example of such a class, for which our analysis in Section 1.2 yields
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finite query complexity (indeed, zero), is the class F of all binary functions f on X = N satisfying
f(1) = 1; this class has τ0

F = 1, by taking x1 = 1.
In the case of the lower bound (1), as a simple illustrative example of a large gap, consider

X = N and F = {1{x} : x ∈ X}: the class of singletons, which are 1 on exactly one arm. The
corresponding model classM simply takes M(x) as a point-mass at fM (x): i.e., M(x) determin-
istically produces reward fM (x), where fM may be any function in F . It is a rather trivial matter
to argue that σ̃F = 0 for this problem, and hence Theorem 4 implies this class is not learnable (a
fact which is indeed rather obvious). For a non-learnable class, the optimal regret should grow as
Θ(T ). As noted above, N (M, ε) = ∞ for this class, so that their upper bound in (2) is infinite.
On the other hand, for the lower bound (1), for any M̄ ∈ M, choosing p to be supported entirely
on the point x with fM̄ (x) = 1, any M ∈ M distinct from M̄ has supx′ f

M (x′) − fM (x) = 1
and D2

H(M(x), M̄(x)) = 1, so that decγ(M, M̄) ≤ 1 − γ. Thus, the regret lower bound in (1) is
at most supγ>0 min{(1 − γ)T, γ} < 1, far from the optimal regret Θ(T ). In particular, the lower
bound (1) does not imply the non-learnability of this model class.

In a very recent follow-up work, which was developed and published concurrently with (and in-
dependently from) the present work, Foster, Golowich, and Han (2023) propose a refinement of the
DEC, which is able to improve some of the above gaps. They also propose a variant which directly
addresses the near-maximization problem, rather than needing to convert from regret analysis. In
particular, these new results are effectively able to replace supM̄∈M with supM̄∈co(M) in (1), which
indeed recovers non-learnability of singletons. However, as they discuss, even with these refine-
ments, there exist model classes M for which there remain arbitrarily large gaps between upper
and lower bounds, due to the appearance of a notion of estimation complexity in the upper bound
(analogous to est(M, T ) above). As discussed above, our Theorem 1 suggests that such gaps are
inevitable and unavoidable for any simple and explicit theory stated in such generality. Aside from
this, it is also desirable to have a clean, direct, and sharp analysis, for such a natural (albeit simple)
special case as the binary bandit setting, as presented in our Section 1.2.

1.7. Comparisons to Recent Works on Learnability Under ZFC

In addition to Ben-David, Hrubes, Moran, Shpilka, and Yehudayoff (2019a) (which we discuss at
length below), other recent works have also studied limitations of ZFC in regard to learnability.
Hanneke, Kontorovich, Sabato, and Weiss (2021) study the problem of universal consistency in
metric spaces: that is, supervised learning algorithms for classification that guarantee their expected
risk converges to the best possible (the Bayes risk) for all distributions. They propose a learning
algorithm specified in terms of a metric associated with an abstract instance space X , and show the
algorithm is guaranteed to be universally consistent under any metric space for which there exists
a universally consistent learning algorithm. They further provide a description of precisely which
metric spaces admit such learning algorithms (namely, essentially separable metric spaces). They
then argue that, under ZFC, it is impossible to prove the existence of metric spaces failing to satisfy
this description: that is, it is impossible to prove the existence of metric spaces that do not admit
universally consistent learners. We note that this is a very different kind of result compared to the
present work, since it does not concern learnability under a particular space X , but rather whether
there exist metric spaces X where universal learning fails. In contrast, the undecidability result in
our Theorem 1 is based on an explicit specification of a space X and function class F for which
bandit learnability is independent of ZFC.
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Another recent work, of Caro (2021), provides a number of claims about learnability statements
whose truth values are undecidable (in either the computational or logical senses). However, we
must note that the nature of those results is fundamentally different from the type of result given by
our Theorem 1. The main point to note is that we define the function classF as a fixed set, explicitly
defined in the proof of Theorem 1, of which we have full knowledge when determining learnability.
In contrast, what is revealed by the work of Caro (2021) appears to be an interesting discussion of
how undecidability can arise from various restrictions to the type of access to the function class a
decider (algorithmic or human) may have. In particular, Caro (2021) considers a scenario in which
we do not know a priori what the function class is that we are tasked with deciding learnability
of, but rather (effectively) are permitted a kind of black-box query access to the class: plugging in
parameter values θ and instances x, and receiving as output the value fθ(x) of some function fθ in
the function class F . To be clear, in that setting, the decider does not have any knowledge of which
functions f are indexed by which parameter values θ, or any other structural information about the
function class: only black-box queries to the map (θ, x) → fθ(x). Indeed, Caro (2021) shows
that, given only this black-box generic access, it is even impossible to decide whether the function
class is infinite or instead contains only one function (redundantly indexed by all possible parameter
values).8

In contrast, our Theorem 1 presents a single explicitly defined function class, and we may
design any learning algorithm with full knowledge of the class, analyzing its behavior under various
target functions. As revealed by our proof, the undecidability of learnability (Theorem 1) arises
due to the influence of set-theoretic axioms on what kinds of learning algorithms can exist for
this particular class. This is analogous to the result of Ben-David, Hrubes, Moran, Shpilka, and
Yehudayoff (2019a), and indeed our proof proceeds via relating the bandit setting to the setting
studied by Ben-David et al. (2019a).

2. Outline of the Proof of Undecidability

The main technical innovation in this work is constructing an equivalence between members of a
subfamily of bandit problems and a subfamily of EMX learning problems. This requires a rather
sophisticated construction, and must address a number of challenges.

In EMX learning (Ben-David, Hrubes, Moran, Shpilka, and Yehudayoff, 2019a), there is a do-
mainW and a setH of binary-valued functions h :W → {0, 1}. There is an unknown distribution
P onW , and the learner is given as input a data set of n i.i.d. samples from P . Its goal is to select
an element ĥ ∈ H with P (x : ĥ(x) = 1) ≥ suph∈H P (x : h(x) = 1)− ε.

Note that, at first, the relation between EMX learning and bandit learning seems completely
non-obvious. In an EMX learning problem, a learner has access to samples from a distribution P ,
whereas bandit problems have no notion of data or distribution. Moreover, bandit problems are
interactive, allowing algorithms that alter their behavior based on past observations, whereas EMX
learners are given an algorithm-independent data set input.

The main idea underlying our construction is that, for a given EMX learning problem (W,H),
we construct a bandit problem (X ,F) where the reward functions in F are based on the distribu-

8. The result does appear to raise a very intriguing question regarding what it means to know “what the function class
is”. However, we believe in the case of the class F in our Theorem 1, at least we can be confident that the class F can
be understood to a far more sophisticated extent than would be permitted by the kind of black-box queries permitted
in the work of Caro (2021).
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tion P in the EMX problem: different distributions P in the EMX problem correspond to different
reward functions in the bandit problem. This idea becomes natural if we also set up a correspon-
dence between arms in X and functions h inH, so that for a given P and h, for the reward function
f corresponding to P , there is an arm xh whose reward f(xh) is (essentially) P (x : h(x) = 1).
Thus, a near-optimal choice of arm xh in the bandit problem corresponds to a near-optimal choice
of function h in the EMX problem, and vice versa.

While the above is a natural approach, it leaves out an important aspect of these problems:
namely, the learning algorithm goes about finding a near-optimal arm or function in completely
different ways in the two types of problems. Specifically, in the EMX problem, the learner is
given an i.i.d. data set as input, whereas in the bandit problem, the learner sequentially selects
arms to observe the rewards. In addressing these differences lies most of the technical challenge in
establishing the equivalence.

The high-level summary of our approach to the first difference (the i.i.d. data) is to create a
set of arms XW within X where, by appropriate randomization, the reward values in this region
effectively simulate i.i.d. samples from P (here we restrict toW = [0, 1]). To be clear, the rewards
remain deterministic functions of X according to a function in F ; the randomization is in either a
(simulated) adversary’s selection of reward function or the learner’s selection of arms, depending
which direction of the equivalence we aim to establish. We accompany this with an increase of
rewards for the above arms xh to (1/3)(2 +P (x : h(x) = 1)), with all arms in XW having rewards
at most 1/3, to ensure the near-optimal arms in the bandit problem still correspond to near-optimal
functions in the EMX problem.

Our solution to the second difference (the sequential nature of the bandit problem, and ability of
the bandit learner to observe rewards, particularly for arms xh as above) is more technical. Focusing
on the sub-family of EMX problems that are union bounded, we argue that if the corresponding
constructed bandit problem is learnable, then the bandit algorithm can be used to construct a weak
monotone compression scheme for the EMX problem (i.e., a compression scheme of size n − 1
that reconstructs to an element of H that is a superset of the data), which Ben-David, Hrubes,
Moran, Shpilka, and Yehudayoff (2019a) have shown implies that the EMX problem is learnable.
The intuitive idea is that the only case where the ability to get rewards for arms xh is helpful is
when the selected arm xh corresponds to an h capturing more of the support of the distribution
P than is already known from the observed rewards from XW (representing the i.i.d. samples).
The ability of an algorithm to select such an informative arm xh is thus basically equivalent to an
ability to guess a never-before-seen point in the support of P . This ability is the essence of what
makes EMX learning possible. Following this intuition, we define a reconstruction function for a
compression scheme which accumulates all of the points from the supports of all of the functions h
for which the algorithm pulls arm xh, while suppressing any information in the reward values other
than what the algorithm has already observed from the arms in XW it has pulled. In converting
this into a compression scheme, the idea is to use samples from a given data set as values of the
rewards for the arms in XW , in which case the above positive outcomes would yield a correct
“guess” at identifying one of the samples the algorithm did not actually observe as a reward. To
complete the construction, since a compression scheme is, by definition, a deterministic function,
we must convert this randomized procedure into a deterministic one; for this, we select values in
W to be included in a reconstruction set which would be at least somewhat likely to be included
in the randomly-constructed set. By a careful analysis of cases and events in the execution of this
algorithm in a simulated scenario involving a random subset of the data, we are able to argue that
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(1) in any data set of a particular size m+ 1, there exists a subset of a smaller size M such that the
above reconstruction function, applied to the subset, would output a set which includes at least one
other element of the m + 1 points, and (2) this fact enables us to construct a compression scheme
which, given the m + 1 samples, identifies a subset of size m from which it will reconstruct an
element of h with the full set of m + 1 samples in its support. The definition and analysis of this
compression scheme represents the most technically involved portion of the proof.

Putting all the above pieces together yields the equivalence between this family of EMX prob-
lems and a corresponding family of bandit problems. In particular, since there is an EMX problem
within this family whose learnability is known to be undecidable (Ben-David, Hrubes, Moran, Sh-
pilka, and Yehudayoff, 2019a), this establishes that learnability of the corresponding bandit problem
is also undecidable, which establishes Theorem 1.

2.1. Outline of the Paper

The rest of the paper is organized as follows. In Section 3 we present the proof of Theorem 1, by
establishing an equivalence between a subfamily of EMX learning problems and a subfamily of
bandit learning problems. In Section 4 we argue that no-regret learnability in the bandit setting is
equivalent to learnability of a near-optimal arm. As a consequence, this establishes that no-regret
learnability is also sometimes undecidable in the bandit setting.

In contrast, Section 5 considers the special case of binary-valued reward functions. Section 6
extends the idea underlying this analysis to real-valued functions. This yields an upper bound on
the query complexity. In contrast to the binary-valued case, this upper bound is sub-optimal in some
cases, which might not be surprising in light of the undecidability result in Theorem 1. We conclude
with several important open problems in Section 7.

3. Independence from ZFC

In this section, we establish a correspondence between a family of EMX learning problems and a
family of bandit learning problems, so that each such bandit problem is learnable if and only if its
corresponding EMX problem is learnable. The undecidability of bandit learnability for an explicitly
constructed class (Theorem 1) will follow from this correspondence.

3.1. Constructing Bandit Problems from EMX Problems

We focus on the case W = (0, 1/3).9 As in (Ben-David et al., 2019a), we take the power set
σ-algebra. This choice is not particularly important for the problem specification, since the EMX
learning problem restricts to countably-supported probability measures anyway, and the class H of
interest only considers finitely-supported sets, which would thus be measurable under any reason-
able σ-algebra. However, as was true in the result of (Ben-David et al., 2019a), it is an important
choice for the undecidability theorem, since it admits certain learning rules which would not be
measurable under more-restrictive σ-algebras.

Before stating our formal construction, for completeness, we discuss the technical meaning
of what a “learning algorithm” is, in the context of this construction. Specifically, for the EMX
problem, a learning algorithm is a function ĥ : W∗ → {0, 1}, with the constraint that, for any

9. The original space studied by Ben-David, Hrubes, Moran, Shpilka, and Yehudayoff (2019a) was based onW = R.
However, the example can be mapped to (0, 1/3) without loss; this choice serves to simplify our construction.
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n ∈ N andw1, . . . , wn ∈ W , ĥ(w1, . . . , wn, ·) ∈ H; there are no further restrictions on this function
(recalling that we take the power set σ-algebra onW). Clearly we can equivalently interpret this as
a function mapping w1, . . . , wn to an element ofH.

For the bandit problem, there are two natural formulations, depending on whether the algorithm
receives as input a budget of how many queries it can make, or whether the algorithm itself deter-
mines a stopping criterion. For the purpose of studying the (target-independent) sample complexity,
there is no significant difference between these (since we can always choose the budget to be the
value of the sample complexity itself), so for simplicity we suppose the algorithm receives as input
a query budget. In this case, a learning algorithm may be regarded as a (possibly random) sequence
of functions xM,ε

t : (X × [0, 1])t−1 → X , t ∈ {1, . . . ,M + 1}, where M is the budget. For a
given M ∈ N ∪ {0} and ε ∈ (0, 1), the algorithm’s sequence of arm pulls are xM,ε

1 = xM,ε
1 (),

xM,ε
2 = xM,ε

2 (xM,ε
1 , f?(xM,ε

1 )), xM,ε
3 = xM,ε

3 (xM,ε
1 , f?(xM,ε

1 ), xM,ε
2 , f?(xM,ε

2 )), and so on, up to
xM,ε
M+1, which is interpreted as the arm returned by the algorithm, which we will typically abbrevi-

ate with x̂, when M and ε are clear from the context. We note that, for simplicity, we suppose the
bandit learner always queries up to its budget M number of arms; this is without loss of generality,
since any algorithm that may terminate early can be represented here by an algorithm that simply
makes additional queries up to the budget M and ignores these additional return values, returning
the same x̂ as the early-stopped algorithm.

Let (W,H) be any EMX learning problem which is union bounded: that is, for every h1, h2 ∈
H, ∃h3 ∈ H with h1 ∪ h2 ⊆ h3. We first construct the set X of arms for the corresponding bandit
problem. There is a countable subset XW , and another subset XH = {xh : h ∈ H}, where every xh
is distinct, and where XW and XH are disjoint. We define X = XW ∪ XH.

Next, we describe the set F of reward functions. Let Π be the set of all countably-supported
probability measures P onW . For each P ∈ Π, there will be a subset FP of reward functions, such
that we define F =

⋃
P∈ΠFP . Thus, to complete the construction, it remains only to define the

subsets FP .
Before getting into the details, the high level idea of the construction is that, for each reward

function f in FP , the arms xh in XH return values f(xh) = (1/3)(P (h) + 2) for each h ∈ H,
where we use the notation P (h) = EX∼P [h(X)] for brevity. Thus, finding a good arm among XH
has a correspondence to finding a near-maximal P (h) value in the EMX problem; the choice of
(1/3)(P (h) + 2) rather than P (h) ensures that the near-optimal arms in the bandit problem are all
in XH, rather than XW (which, as we explain below, will always have reward values at most 1/3),
so that (without loss of generality) we can focus on bandit learners that always choose x̂ ∈ XH (so
that there is a corresponding output ĥ for the corresponding EMX problem).

However, there are additional challenges in relating the EMX and bandit problems. Even given
the above correspondence of optimal outputs, the EMX problem differs from the bandit problem
in two important ways. First, it is not possible to exactly evaluate P (h) in the EMX problem;
it can only be estimated from data. In contrast, a bandit learner can query any xh and observe
f(xh) = (1/3)(P (h) + 2), effectively allowing it to evaluate P (h) for any h ∈ H. This poses a
challenge in converting a bandit learner to an EMX learner, which we must address in the proof.
It appears there is no general way to resolve this for general EMX problems (e.g., even the ability
to estimate P (h) from samples is not good enough to resolve this discrepancy). However, we note
that the classes H of interest in the work of Ben-David, Hrubes, Moran, Shpilka, and Yehudayoff
(2019a) fall into a special subfamily, known as union-bounded classes, in which case Ben-David,
Hrubes, Moran, Shpilka, and Yehudayoff (2019a) showed that EMX learnability is equivalent to the
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existence of a weak monotone compression scheme: namely, existence of a finite k and a function
ρ : Wk → H such that, given any sequence S of k + 1 points contained in some h ∈ H (i.e.,
h(w) = 1 for all w ∈ S), there exists a subsequence S′ of S, of size k, such that ρ(S′) contains S.
Based on this feature of union-bounded classes, we show that for the corresponding bandit problem
(as outlined here), if the bandit problem is learnable, the bandit learner can be converted into a weak
monotone compression scheme (of the above type), hence establishing learnability of the EMX
problem.

A second difference from EMX learning also poses a challenge: namely, the EMX learner has
access to i.i.d. data sampled from P . In contrast, the bandit learning problem, as studied in its
simplest form in this work, has deterministic rewards. To address this, we propose to use the set
of arms XW to effectively simulate having access to i.i.d. data. This construction is rather delicate,
since we need to make it so that the conversion from EMX learner to bandit learner can simulate
i.i.d. samples by choosing random elements fromXW (which is accomplished by setting the rewards
to be a map representing a random variable onW), but on the other hand, for the conversion from
bandit learner to EMX learner, we must ensure that the bandit learner cannot rely on the structure of
rewards in XW beyond what samples would give, so that reward values can be simulated from the
samples available in the EMX problem. In other words, we want that the regionXW is only useful as
a data source, and has no helpful relation to the target reward function f? beyond this. To achieve the
latter guarantee, we defineFP as a family of reward functions, allowing us to assign different reward
values to different arms in XW , and in the proof we effectively employ a prior distribution over (a
finite subset of) FP so that, for whatever queries the bandit learner would choose in XW , answering
according to the value of a sample from the EMX problem has roughly the same distribution as the
reward value for a random reward function sampled from this prior, thus allowing the EMX samples
to be used for answering queries in this region.

We now turn to the formal construction. As mentioned, F =
⋃
{FP : P ∈ Π}, so that we will

focus on describing the FP sets. We describe the behavior of the functions in FP in two parts. We
first describe a function fP,H on XH, and then a set FP,W of functions on XW . The final set FP
will then be formed by combination:

FP = {x 7→ fW(x)1[x ∈ XW ] + fP,H(x)1[x ∈ XH] : fW ∈ FP,W}.

We begin with the function fP,H : XH → [0, 1], the simpler of the two parts, specified as
follows:

∀h ∈ H, fP,H(xh) = (1/3)(P (h) + 2).

The setFP,W is quite a bit more involved. LetX (1)
W = {z(1)

1 , z
(1)
2 , . . .} andX (2)

W = {z(2)
1 , z

(2)
2 , . . .}

be disjoint countably infinite sets such that XW = X (1)
W ∪ X (2)

W . Let ΣP denote the set of all se-
quences w = {wi}∞i=1 satisfying the property: denoting by P̂w

T the empirical measure, specified by
P̂w
T ({w}) = 1

T

∑T
i=1 1[wi = w], it holds that

lim
T→∞

sup
w∈W

∣∣∣P ({w})− P̂w
T ({w})

∣∣∣ = 0.

In particular, since P is countably supported, there indeed exist such sequences wi, and moreover,
this also implies the above property guarantees that

lim
T→∞

∥∥∥P − P̂w
T

∥∥∥ = 0,
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where ‖ · ‖ here denotes the total variation distance. For any such sequence w ∈ ΣP , let Ti(w)
denote the set of all T ∈ N with T ≥ 3 such that∥∥∥P − P̂w

T

∥∥∥ ≤ 1

i
.

The set FP,W is defined as the set of all functions fw,TP : XW → [0, 1], w = {wi}∞i=1 ∈ ΣP ,
T = {Ti}∞i=1 with Ti ∈ Ti(w), defined as follows. For any i ∈ N,

fw,TP (z
(1)
i ) = wi

and
fw,TP (z

(2)
i ) =

1

Ti
.

In particular, note that fw,TP (x) ≤ 1/3 for every x ∈ XW .
In the context of the proof below, the purpose of the points z(1)

i is for their reward values to
represent the samples in the EMX problem. However, there is a difficulty in using them to simulate
i.i.d. samples from P , to feed into an EMX learner, since the distribution P may be spread arbitrarily
thinly on its support, requiring us to use a simulated distribution involving a large, but unknown,
support size, in order to approximate sampling from P .10 To resolve this, we allow the rewards
on the z(2)

i points to effectively communicate how thinly this distribution is spread (or rather, how
many wi values to include in the support of a uniform distribution) enabling us to sample from a
distribution that approximates P arbitrarily well.

This completes the construction of the set F . We next state the formal claim, from which our
Theorem 1 will follow.

Theorem 9 ForW = (0, 1/3) and any union-boundedH of finite sets, the bandit problem (X ,F)
constructed above is learnable if and only if the EMX problem (W,H) is learnable.

Before stating the proof, we first need the following lemma from Ben-David, Hrubes, Moran,
Shpilka, and Yehudayoff (2019a,b).

Lemma 10 (Ben-David, Hrubes, Moran, Shpilka, and Yehudayoff, 2019b, Corollary 4) Any given
union-bounded EMX problem (W,H) is EMX learnable if and only if there exists an m ∈ N for
which there exists an (m + 1) → m monotone compression scheme for H: that is, a function
η : Wm → H such that ∀h ∈ H and x1, . . . , xm+1 ∈ h, ∃i1, . . . , im ∈ {1, . . . ,m + 1} such that
{x1, . . . , xm+1} ⊆ η(xi1 , . . . , xim).

We are now ready for the proof of Theorem 9.
Proof of Theorem 9 We prove the “if” direction of the theorem for any EMX problem (W,H)
as follows. Fix any ε ∈ (0, 2/3). Suppose Aemx is a learning algorithm for the EMX problem
(W,H), guaranteed to return ĥ with EP (ĥ) ≥ suph∈H P (h) − 3ε/2 based on M(3ε/2) samples

10. It is tempting to simply sample from a uniform distribution on a continuous interval, and define the reward function
as mapping uniform samples to P -distributed random variables. However, to the best of our knowledge, there is no
way to implement this measurably, since the EMX learner these random variables would be composed with is only
required to be measurable under the product σ-algebra.
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from P , for any P ∈ Π: i.e., with sample complexity M(3ε/2). Let m = M(3ε/2). We construct a
bandit learning algorithm based on Aemx as follows. Suppose f? ∈ F is the target reward function.
Let iε = d2m/(3ε)e. First pull the arm z

(2)
iε

and let T = 1/f?(z
(2)
iε

). Sample W1, . . . ,Wm i.i.d.

Uniform({z(1)
1 , . . . , z

(1)
T }) and pull these arms to observe rewards Xi = f?(Wi), i = 1, . . . ,m.

Let ĥ = Aemx(X1, . . . , Xm). Output the arm x̂ = xĥ as the return value of the bandit learner.
We argue that this achieves ε-optimal expected reward, as follows. Let P ∈ Π be the distribution

for which f? ∈ FP , and let w = {wi}∞i=1 ∈ ΣP and T = {Ti}∞i=1 with Ti ∈ Ti(w), for which
f?(x) = fw,TP (x)1[x ∈ XW ] + fP,H(x)1[x ∈ XH]. In particular, by definition, we have

‖P − P̂w
T ‖ ≤

ε

2m
.

Since eachXi has distribution P̂w
T , and they are sampled independently, we have, for the distribution

P(X1,...,Xm) =
(
P̂w
T

)m
of (X1, . . . , Xm),

∥∥P(X1,...,Xm) − Pm
∥∥ ≤ 3ε

2
.

Thus, for (X ′1, . . . , X
′
m) ∼ Pm,

E
[
P (ĥ)

]
= E[Aemx(X1, . . . , Xm)] ≥ E

[
Aemx(X ′1, . . . , X

′
m)
]
− 3ε

2
,

and by the guarantee of the EMX learner,

E
[
Aemx(X ′1, . . . , X

′
m)
]
≥ sup

h∈H
P (h)− 3ε

2
.

Altogether,

E[f?(x̂)] = E
[
(1/3)(P (ĥ) + 2)

]
≥ (1/3)

(
sup
h∈H

P (h)− 3ε+ 2

)
= sup

x
f?(x)− ε.

Since the bandit algorithm pulls exactly m + 1 = M(3ε/2) + 1 arms, we conclude that the
sample complexity of learning (X ,F) in the bandit setting is at most M(3ε/2) + 1, and hence
(X ,F) is learnable in the bandit setting.

Second, we address the “only if” direction, holding for any union-bounded set H of finite sets,
forW = (0, 1/3). This direction is quite a bit more involved, since a bandit algorithm might query
at the arms xh, which is a feature not directly present in the EMX problem. However, we will make
use of Lemma 10 from Ben-David, Hrubes, Moran, Shpilka, and Yehudayoff (2019a,b), establishing
equivalence of union-closed EMX learnability to monotone compressibility. In particular, it is for
this reason that we restrict (W,H) to be a union-bounded EMX learning problem. Suppose Ab
is a learning algorithm for the Bandit problem (X ,F), with ε = 1/18, and query complexity
M = M(1/18) ∈ N. Without loss of generality, supposeAb always returns an arm xĥ in XH (since
all arms in XH have higher rewards than all arms in XW ). Additionally, without loss of generality,
let us suppose Ab is well-behaved even when the rewards it receives are not consistent with any
f ∈ F : that is, it still pulls M arms and returns some arm xĥ ∈ XH.
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We construct a monotone compression scheme η defined as follows. Let m = d3M/2e. Fix
any sequence S′ = {x1, . . . , xM} of M distinct points all contained in some set in H. We aim to
specify the set returned by η(S′).

Consider an execution of Ab where we specify the returned rewards as follows. Initialize k to
0. As the algorithm executes, if it ever pulls any arm z

(2)
i ∈ X

(2)
W , it always receives a reward 1

m+1 .

On the other hand, when at some time in its execution, the algorithm pulls an arm z
(1)
i ∈ X (1)

W ,
then if it has previously pulled any arm z

(1)
j with i and j equivalent mod m+ 1, then the algorithm

receives reward equal to the reward it received when it pulled arm z
(1)
j ; otherwise, if it has never

pulled such an arm previously, then it receives as its reward the value xk+1; after such a round, we
increment k ← k + 1. Finally, if at some round in its execution, the algorithm pulls an arm xh in
XH, it receives as the reward the value

1

3

(
|h ∩ {x1, . . . , xk}|

m+ 1
+ 2

)
.

In this case, we do not increment k after such a round.
After the algorithm halts (after M total arm pulls), it returns some arm xĥS′

. Define HS′ as a

subset of H, with elements ĥS′ along with all h ∈ H for which the algorithm pulled arm xh during
this entire execution. Note that, ifAb is a randomized algorithm, then HS′ may also be random. Let
Ŵ(S′) be the set of all w ∈ W such that

P(w ∈
⋃
HS′) ≥

1

4

1

M + 1

1

m+ 1
.

Define η(S′) as any hS′ ∈ H with hS′ ⊇ S′ ∪ Ŵ(S′) (the existence of which is argued below).
To show η(S′) is well-defined, we need to argue that such an hS′ exists. For this, note that each

w ∈ Ŵ(S′) is contained in some h ∈ H (by definition ofHS′), and S′ is contained in some element
of H (by assumption); thus, to show such an hS′ will be guaranteed to exist by the union-bounded
property of H, it suffices to argue that Ŵ(S′) is finite. To show the latter, note that HS′ is a finite
set (of size at most M + 1), and each h ∈ HS′ is an element ofH, and hence is itself a finite subset
of W . Thus,

⋃
HS′ is always a finite set. Let K̂ = |

⋃
HS′ |, the cardinality of the set. Since K̂

is always finite, there exists a finite K∗ ∈ N such that, with probability at least 1 − 1
8

1
M+1

1
m+1 ,

K̂ ≤ K∗. Thus, for each w ∈ Ŵ(S′),

P(w ∈
⋃
HS′ and K̂ ≤ K∗) ≥ 1

4

1

M + 1

1

m+ 1
− 1

8

1

M + 1

1

m+ 1
=

1

8

1

M + 1

1

m+ 1
.

Enumerating
⋃
HS′ =: {w′1, . . . , w′K̂} with w′1 < w′2 < · · · < w′

K̂
, by the union bound, for each

w ∈ Ŵ(S′), there exists k ∈ {1, . . . ,K∗} such that

P(w′k = w) ≥ 1

K∗
1

8

1

M + 1

1

m+ 1
.

For each k ∈ {1, . . . ,K∗}, there can be at most K∗8(M + 1)(m + 1) distinct values w for which
this holds (the corresponding events {w′k = w} being mutually exclusive). Therefore,∣∣∣Ŵ(S′)

∣∣∣ ≤ (K∗)28(M + 1)(m+ 1) <∞,
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so that, letting hw ∈ H be any set with w ∈ hw, the finite union
⋃
{hw : w ∈ Ŵ(S′)} contains

Ŵ(S′) and is itself contained in some set h ∈ H by the union-bounded property, and hence (since
S′ is also contained in an element of H by assumption) S′ ∪ Ŵ(S′) is contained in some hS′ ∈ H,
so that our definition of η(S′) above is valid.

Since we aim to argue η provides an (m+ 1)→ m monotone compression scheme, we need to
extend the definition of η to allow arguments of size m, rather than M (recalling M < m). Toward
this end, for any finite T > M and sequence S′ = {x′1, . . . , x′T } of distinct elements all contained
in some set in H, define η(S′) as any hS′ ∈ H with hS′ ⊇

⋃
{η(x′i1 , . . . , x

′
iM

) : i1, . . . , iM ∈
{1, . . . , T} distinct}. Again, such an hS′ is guaranteed to exist by the union-bounded property of
H.

We next argue that η is indeed a (m+1)→ mmonotone compression scheme forH. Let h ∈ H
and S = {x1, . . . , xm+1} ⊆ h. For each i ∈ {1, . . . ,m+ 1}, let Si = {xj : j 6= i}. We will argue
that ∃i ∈ {1, . . . ,m+ 1} with η(Si) ⊇ S, so that η is a valid (m+ 1)→ m monotone compression
scheme for H. Note that it will suffice to find even one sequence S′ of length M in S for which
hS′ contains even one of the other points in S, since letting xi be this point, by definition of η
we would have xi ∈ η(Si), and since Si ⊆ η(Si) (which follows from the definition of η(S′) for
sequences S′ of length M ), it follows that S ⊆ η(Si). Thus, we will show there exists a sequence
S′ = {xi1 , . . . , xiM } for which ∃i /∈ {i1, . . . , iM} with xi ∈ η(S′). As a trivial case, if S contains
any duplicated elements, then since S′ ⊆ η(S′) by definition, we trivially have S ⊆ η(Si) where xi
is any one of the duplicated values. To focus on the nontrivial case, for the remainder of the proof
let us suppose all elements of the sequence S are distinct.

We will construct a distribution over (a finite subset of) the reward functions in FP , were P =
Uniform(S). Let Sσ = {x̂1, . . . , x̂m+1} be a uniform random permutation of the sequence of
elements of S (independent of the randomness ofAb). Let S′ = {x̂1, . . . , x̂M}. Define a (randomly
selected) reward function f? ∈ FP as follows. The sequence w = {wi}∞i=1 is defined by wi = x̂j
where j ∈ {1, . . . ,m + 1} is equivalent to i mod m + 1: that is, w repeats copies of the sequence
in Sσ infinitely. Define the sequence T = {Ti}∞i=1 as Ti = 1

m+1 for all i. Note that fw,TP ∈ FP,W .
Finally, define the target reward function as f?(x) = fw,TP (x)1[x ∈ XW ] + fP,H(x)1[x ∈ XH].

Note that for any possible value of f? under this distribution, since f? ∈ FP , if a returned arm
xĥ has reward (1/3)(P (ĥ) + 2) ≥ maxh∈H(1/3)(P (h) + 2) − 1/9 = (1/3)((2/3) + 2), it must
have |ĥ ∩ S| ≥M + 1 (by our choice of m = d3M/2e). In particular, when this occurs, it must be
that ĥ ∩ S \ S′ 6= ∅: that is, ĥ contains at least one point in S and not in S′.

Now for the key observation. Note that if we were to execute Ab under reward function f?

above, the sequence of rewards it receives is a random sequence (both due to randomness ofAb and
randomness of the permutation Sσ). In particular, since Sσ is a uniform random permutation, this
sequence of rewards is distributionally equivalent to the sequence of rewards that would be received
in an execution which receives as rewards for pulling arms in X (1)

W the same reward values as in the
definition of η(S′) above (i.e., the reward received when pulling arm z

(1)
i is x̂j where j is equivalent

to i mod m + 1), though (unlike in η(S′)) still receiving reward f?(xh) upon pulling arms xh in
XH. Without loss, let us suppose this is precisely how the rewards are defined in the execution ofAb
under the target reward function f? (this merely amounts to a coupling among the random variables
S′ and the sequence of query choices of the algorithm, which, since S′ is a uniform random subset,
does not change the distribution of rewards received, arms pulled, or the value xĥ returned).
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In particular, with this coupling in place, the execution of Ab under the target reward function
f?, and the execution of Ab in the definition of η(S′), are identical (supposing we also couple the
internal randomness in these two executions: that is, they execute with the same internal random
bits) up until the first round in whichAb pulls an arm xh ∈ XH with h∩S containing an element of
S not previously received as a reward from a past pull of an arm in X (1)

W : that is, in the execution of
η(S′), the first round in which it pulls an xh with h ∩ S \ {x̂1, . . . , x̂k} 6= ∅ (for the k value at that
round, in the definition of η(S′)). In particular, on the event that Ab never pulls such an arm xh, we
have that xĥS′ = xĥ.

This equivalence is the purpose we have in mind when defining η. Indeed, we may note that if
f?(xĥ) ≥ supx f

?(x)− 1/9 (so that ĥ∩ S \ S′ 6= ∅), then either ĥS′ = ĥ, so that hS′ ∩ S \ S′ 6= ∅
and hence

⋃
HS′ ∩S \S′ 6= ∅, or the execution ofAb in the definition of η(S′) pulls some xh with

h ∩ S \ {x̂1, . . . , x̂k} 6= ∅, so that
⋃
HS′ contains this value xi which is in S \ {x̂1, . . . , x̂k}. The

point, intuitively, is that in either case the algorithm Ab has succeeded in guessing some point in S
it has never seen before. The remainder of the proof argues that this ability to guess the value of a
never-before-seen point from S results in some Si having xi ∈ η(Si).

Noting that supx f
?(x) = 1, Markov’s inequality and our choice of ε = 1/18 imply

P
(
f?(xĥ) ≥ sup

x
f?(x)− 1/9

)
= 1− P

(
1− f?(xĥ) >

1

9

)
≥ 1− 9

(
1− E[f?(xĥ)]

)
≥ 1− 9ε =

1

2
.

Thus,

P
(
P (ĥ) ≥ 2

3

)
≥ 1

2
,

which, by the law of total probability, implies

E
[
P
(
P (ĥ) ≥ 2

3

∣∣∣∣S′)] ≥ 1

2
.

This implies that, with non-zero probability over the draw of S′, it holds that

P
(
P (ĥ) ≥ 2

3

∣∣∣∣S′) ≥ 1

2
.

By the arguments above, on this event, we have

P
(
ĥ ∩ S \ S′ 6= ∅

∣∣∣S′) ≥ 1

2
.

Therefore, there exists some non-random choice of a sequence S′ = {x̂1, . . . , x̂M} in S such that,
if the algorithm receives rewards for arms pulled in X (1)

W as described in the definition of η(S′)
(though still with f?(xh) values for arms xh from XH) then

P
(
ĥ ∩ S \ S′ 6= ∅

)
≥ 1

2
. (3)

Consider the execution of Ab in the above scenario (again, with rewards for arms in X (1)
W as

described in the definition of η(S′)), and denote by ĥ∗ the ĥ corresponding to the arm xĥ that would
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be returned. Also consider the execution of Ab in the definition of η(S′): that is, in addition to
the rewards in X (1)

W defined as in the execution leading to (3), we also use the modified the reward

values for arms xh pulled in XH, so that the algorithm receives reward (1/3)
(
|h∩{x̂1,...,x̂k}|

m+1 + 2
)

for the value k at that round in the execution described in the definition of η(S′). Denote by h̃ the ĥ
corresponding to the arm xĥ that would be returned in this latter case.

There are two cases to consider. In Case 1, in the execution of Ab leading to ĥ∗, at every time
t, either it pulls an arm in XW , or it pulls an arm xh ∈ XH for which h ∩ S ⊆ {x̂1, . . . , x̂k}, for
the value of k at that round in the execution. As mentioned, the rewards it receives (from both the
arms in XW and the arms in XH) are identical to the rewards it would receive in the execution in
the definition of η(S′) (again, supposing the same random bits are shared by the two executions, so
that their choices remain identical as long as their received rewards remain identical). Thus, in this
first case, we have h̃ = ĥ∗.

On the other hand, consider a second case, Case 2, where the execution of Ab leading to ĥ∗

includes at least one time t in which it pulls an arm xh[ in XH for which h[∩S contains at least one
element x̃ of S not contained in {x̂1, . . . , x̂k}, for the value of k in that round of the execution. Let
us consider this h[ and x̂1, . . . , x̂k for the first time t this happens; let us name the corresponding
values of t and k as t̂ and k̂, respectively. Since, up until that time t̂, the arms pulled by Ab and
the rewards received in the execution leading to ĥ∗ and the execution leading to h̃ will be identical,
naturally the execution in the definition of η(S′) will also pull this arm xh[ at time t̂.

We have chosen S′ based on (3) so that, with probability at least 1
2 , either Case 1 occurs and

h̃ ∩ S \ S′ 6= ∅ (call this Event 1), or Case 2 occurs and hence h[ ∩ S \ {x̂1, . . . , x̂k̂} 6= ∅ (call this
Event 2). By the pigeonhole principle, at least one of these two events occurs with probability at
least 1

4 .
Consider first the scenario where Event 1 has probability at least 1

4 . Since there arem+1−M =
dM/2e + 1 elements in S \ S′, by the pigeonhole principle there must exist some xi ∈ S \ S′ for
which, with probability at least 1

4
1

dM/2e+1 , it holds that xi ∈ h̃. In particular, in this scenario, since
1
4

1
dM/2e+1 ≥

1
4

1
M+1

1
m+1 , we have xi ∈ η(S′), and therefore xi ∈ η(Si), so that η(Si) ⊇ S.

Finally, consider the scenario where Event 2 has probability at least 1
4 : that is, with probability

at least 1
4 , Case 2 occurs and hence h[ ∩ S \ {x̂1, . . . , x̂k̂} 6= ∅. At time t̂ in the execution, the

algorithm has received, as the set of distinct values of rewards for the arms it has pulled in X (1)
W ,

precisely the set {x̂1, . . . , x̂k̂}: the first k̂ values in the sequence S′ = {x̂1, . . . , x̂M}. Note that k̂
is a random variable (which has a well-defined value, albeit still random, whenever Case 2 occurs).
By the pigeonhole principle, there exists a value k∗ ∈ {0, 1, . . . ,M} such that, with probability
at least 1

4
1

M+1 , Case 2 occurs and k̂ = k∗. In the event Case 2 occurs, define î as the smallest
i ∈ {1, . . . ,M} such that xi ∈ h[ ∩ S \ {x̂1, . . . , x̂k̂}. By the pigeonhole principle, there exists
a value i∗ ∈ {1, . . . ,m + 1} such that, with probability at least 1

4
1

M+1
1

m+1 , Case 2 occurs while
k̂ = k∗ and î = i∗. In particular, on this event, xi∗ /∈ {x̂1, . . . , x̂k∗}.

Now define a sequence S′′ = {x̂1, . . . , x̂k∗ , x̌k∗+1, . . . , x̌M}, where each w̌i can be chosen as
any elements of S \ ({x̂1, . . . , x̂k∗} ∪ {xi∗}). In particular, this implies the elements of S′′ are all
contained in Si∗ . Now consider the execution of Ab in the definition of η(S′′) (again supposing
shared internal random bits with the execution in the definition of η(S′)). In particular, since the
first k∗ elements of S′′ are the same as in S′, the above argument implies that with probability at
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least 1
4

1
M+1

1
m+1 , the execution of Ab in the definition of η(S′′) will pull an arm xh[ ∈ XH with

xi∗ ∈ h[. In particular, this implies xi∗ ∈ η(S′′), and therefore xi∗ ∈ η(Si∗), so that η(Si∗) ⊇ S.
Hence, in either scenario (i.e., the scenario where Event 1 has probability at lesat 1

4 or the sce-
nario where Event 2 has probability at least 1

4 ), we have shown there exists i ∈ {1, . . . ,m+1} such
that η(Si) ⊇ S. Since this argument holds for any sequence S of length m+ 1, we conclude that η
is a valid (m+ 1)→ m monotone compression scheme forH, and hence, by Lemma 10, the EMX
problem (W,H) is learnable. This completes the proof.

In particular, note that Theorem 1 now follows immediately from Theorem 9 and the indepen-
dence from ZFC of EMX learnability onW , as established by Ben-David, Hrubes, Moran, Shpilka,
and Yehudayoff (2019a). Specifically, they show the following result.

Lemma 11 (Ben-David et al., 2019a) For W = (0, 1/3) and H the class of all finite subsets
of W , EMX learnability of (W,H) is independent of the ZFC axioms. Specifically, (W,H) is
EMX learnable under the Continuum Hypothesis axiom (i.e., that the continuum is the smallest
cardinality strictly greater than the integers), whereas (W,H) is not EMX learnable under the
axiom that there are infinitely many distinct cardinalities between the integers and the continuum
(each of these axioms are known to be independent of ZFC; Jech, 2003; Kunen, 1980).

Proof of Theorem 1 For W = (0, 1/3), the class H of all finite subsets of W is union-bounded
(indeed, it is closed under finite unions). Therefore, taking (X ,F) to be the bandit problem corre-
sponding to the EMX problem (W,H), as guaranteed to exist by Theorem 9, we have that (X ,F)
is learnable in the bandit setting if and only if (W,H) is learnable in the EMX setting. Since
Lemma 11 implies that the latter is independent of ZFC, the conclusion of Theorem 1 follows.

Remark 12 Bandit optimization is also known as zeroth-order optimization, since we do not have
access to oracles for derivatives. We remark that having access to such an oracle would not improve
the undecidability situation. Specifically, the above scenario can easily be extended to one where
we have access to additional oracles for any number of derivatives, and yet the undecidability proof
would remain valid.

4. Undecidability of No-Regret Learnability

In this section, we prove Theorem 2, establishing equivalence of no-regret bandit learnability to
PAC bandit learnability. In light of Theorem 1, this has the further implication that there is a bandit
problem (X ,F) whose no-regret learnability is independent of the ZFC axioms.

Theorem 2 (restated) Any (X ,F) is learnable in the bandit setting if and only if it is no-regret
learnable in the bandit setting.

Proof of Theorem 2 Let (X ,F) be any problem learnable in the bandit setting. Suppose A is an
algorithm for learning the bandit problem (X ,F) (i.e., in the PAC/optimization setting), guaran-
teeing query complexity M(ε). Let us suppose A is an anytime algorithm: that is, we may stop it
after any a-priori chosen number n of queries, and guarantee the expected loss is at most ε as long
as n ≥ M(ε), for any choice of ε. This is without loss of generality, since given any algorithm

27



HANNEKE YANG

that would terminate in at most M(ε) rounds, for given ε, we may repeatedly halve the value of
ε = 2−1, 2−2, . . . to produce a sequence of arms x̂1, x̂2, . . .: that is, we run A for ε = 2−1 until it
terminates (after at most M(2−1) queries) and returns an arm x̂1, then re-running it with ε = 2−2

until it terminates (after at most M(2−2) queries) and returns an arm x̂2, and so on. For any given
n, we may then choose the εn = 2−i for i maximal such that n ≤

∑i
j=1M(2−j) and return x̂i,

which guarantees E[f?(x̂i)] ≥ supx f
?(x)−εn, which is still a PAC learner since εn → 0 due to the

fact that M(ε) < ∞ for all ε > 0. The query complexity is increased to M ′(ε) =
∑i

j=1M(2−j),
where i = dlog2(1/ε)e, but this is still a finite number for any ε, and hence the algorithm remains a
bandit learner. We proceed with the assumption that such a conversion has already been applied, so
that A is already an anytime algorithm, and M(ε) is its query complexity.

Let x1, x2, . . . denote the sequence of arms pulled by A, and let r1, r2, . . . denote the rewards it
receives from each pull, respectively. If the algorithm were to be terminated after some n rounds,
let x̂n denote the arm it would return (including the case n = 0, where we may define x̂0 as some
arbitrary fixed choice). Now consider a no-regret learner, based on the well-known “ε-greedy”
strategy, defined as follows. We distinguish between exploration rounds, in which we pull the next
xn in the sequence of arms A would pull, and exploitation rounds, in which we pull an arm x̂n for
an appropriate choice of n. Suppose we are on round t, and we have done n “exploration rounds”
so far, in whichA chose arms x1, . . . , xn and received rewards r1, . . . , rn. Now with (independent)
probability pt we let A pull its next arm xn+1 and receive reward rn+1 (an “exploration” round).
Otherwise (“exploitation” round), on the probability 1− pt event, we pull the arm x̂n that A would
return if we were to halt it there. In either case, let x̃t denote the arm pulled by this algorithm on
round t.

Intuitively, the more armsA gets to pull, the better the reward of its return arm x̂n. So the 1−pt
probability option (exploitation) gets better if we letA explore more (the pt probability option). By
setting pt to decrease gradually, as x̂n gets better over time, we gradually exploit more and more.
But we don’t decrease pt too quickly, so we still explore infinitely often as the number of rounds t
grows.

Formally, let {pt}t∈N be any non-increasing sequence satisfying pt → 0 with
∑

t pt = ∞. Let
nt denote the value of n above, after round t (i.e., if round t explores, then nt = nt−1 + 1, and
otherwise nt = nt−1). Let εn be a non-increasing sequence in [0, 1] with εn → 0 such that, for
every n ∈ N, n ≥ M(εn); such a sequence exists by the fact that A is a learning algorithm with
finite query complexity M(ε) for every ε > 0.

For any t, we have

E[f?(x̃t)|nt−1] = E
[
ptf

?(xnt−1+1) + (1− pt)f?(x̂nt−1)
∣∣nt−1

]
≥ (1− pt)E

[
f?(x̂nt−1)

∣∣nt−1

]
≥ (1− pt)

(
sup
x
f?(x)− εnt−1

)
.

Thus,

E[f?(x̃t)] ≥ (1− pt)
(

sup
x
f?(x)− E[εnt−1 ]

)
≥ sup

x
f?(x)− pt − E[εnt−1 ].

Note that nt−1 is a sum of t−1 independent Bernoulli random variables, with E[nt−1] =
∑t−1

t′=1 pt′ =:
n̄t−1. Thus, by a Chernoff bound, with probability at least 1−e−n̄t−1/8, it holds that nt−1 ≥ 1

2 n̄t−1.
Thus, since εn is non-increasing and bounded by 1,

E[εnt−1 ] ≤ ε(1/2)n̄t−1
+ e−n̄t−1/8.
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By the choice of pt satisfying
∑∞

t′=1 pt′ =∞, we have n̄t−1 →∞ as t→∞. Thus, since εn → 0

as n→∞, we have E[εnt−1 ]→ 0. Therefore,
∑T

t=1 E[εnt−1 ] = o(T ). Moreover, since pt → 0, we
have

∑T
t=1 pt = o(T ). Letting R(T ) =

∑T
t=1 pt +

∑T
t=1 E[εnt−1 ] = o(T ), and noting that R(T )

has no dependence on the particular target reward function f? ∈ F , altogether we have that

T sup
x
f?(x)− E

[
T∑
t=1

f?(x̃t)

]
≤ R(T ),

so that this algorithm is a no-regret learner, and hence (X ,F) is no-regret learnable in the bandit
setting.

For the other direction in the equivalence, if (X ,F) is no-regret learnable in the bandit setting,
and B is any no-regret learner for (X ,F) with some regret boundR(T ) = o(T ), if we run B for T
rounds, and then output an arm x̂ ∼ Uniform(x1, . . . , xT ) chosen uniformly at random from those
x1, . . . , xT that B has pulled on rounds 1, . . . , T , this will have

E[f?(x̂)] =
1

T
E

[
T∑
t=1

f?(xt)

]
≥ sup

x
f?(x)− 1

T
R(T ).

SinceR(T ) = o(T ), for any ε > 0, there exists Tε ∈ N such that any T ≥ Tε satisfies 1
TR(T ) ≤ ε,

and hence the above choice of x̂ provides a bandit learner (in the PAC/optimization sense) with
query complexity M(ε) ≤ Tε.

This completes the proof that any bandit problem (X ,F) is PAC learnable if and only if it is
no-regret learnable.

As discussed above, Theorems 2 and 1 together have Corollary 1 as an immediate implication:
that is, there exists a bandit problem (X ,F) such that, whether or not (X ,F) is no-regret learnable
is independent of the ZFC axioms.

5. The Optimal Query Complexity of Binary-Valued Bandits

While the above negative results, in some sense, indicate that it is not possible to provide a fully-
general characterization of bandit learnability, it nevertheless leaves open the potential for theories
of bandit learning that cover many important cases of learnable and non-learnable classes. Toward
this end, we are interested in identifying abstract dimensions which capture certain interesting cases.

We begin with the simplest case here: namely, binary-valued bandits. We say (X ,F) is a
binary-valued bandit problem if every f ∈ F has image contained in {0, 1}: that is, {f(x) : x ∈
X} ⊆ {0, 1}. Note that this case is particularly simple since achieving f?(x̂) ≥ supx f

?(x)− ε for
some ε ∈ (0, 1) is equivalent to choosing x̂ equal any x with f?(x) = 1 (if such an x exists).

In this section, we identify the optimal query complexity and optimal algorithms for learning
binary-valued bandit problems. We treat separately the case of restricting to deterministic learners
vs allowing randomized learners. We identify the optimal query complexity in both cases, and
supply a learner matching this complexity. Interestingly, this also reveals a separation between
deterministic and randomized learners, in terms of learnability.
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5.1. Deterministic Learners

We begin with the case of deterministic learners. For convenience, we restate the definitions and
results stated in Section 1.

Definition 2 (restated). Define the zero-teaching dimension of F , denoted τ0
F , as the smallest

t such that, there exist x1, . . . , xt ∈ X with

min
f∈F\{0}

max
1≤i≤t

f(xi) = 1,

where 0 is the all-zero function (which may or may not be in F).
We have the following result, stating that this quantity determines learnability of binary-valued

bandit problems by deterministic learners. The result itself is rather obvious, given the simplicity of
the binary-valued bandit scenario.

Theorem 3 (restated). Any binary-valued bandit problem (X ,F) is learnable by a deterministic
algorithm if and only if τ0

F < ∞. Moreover, the optimal query complexity M(ε) achievable by
deterministic algorithms satisfies, ∀ε ∈ (0, 1), M(ε) = τ0

F − 1.
Proof The result is almost immediate from the definition of τ0

F . For completeness, we present the
argument in detail, beginning with a proof that M(ε) ≤ τ0

F − 1. If t = τ0
F < ∞, let x1, . . . , xt

satisfy the criterion in Definition 2: that is,

min
f∈F\{0}

max
1≤i≤t

f(xi) = 1.

We may use an algorithm that pulls the arms x1, . . . , xt−1. If one of these arms xi yields a reward
of 1, the algorithm returns this arm xi as its output x̂. Otherwise it returns the arm xt as its output
x̂. We are guaranteed that, for any target reward function f? ∈ F , if f? 6= 0 then at least one of
x1, . . . , xt has f?(xi) = 1. In this case, if it is one of x1, . . . , xt−1, the algorithm will return it
as x̂, and hence f?(x̂) = 1 = supx f

?(x). If f? 6= 0 and none of x1, . . . , xt−1 has f?(xi) = 1,
then it must be that f?(xt) = 1, and indeed the algorithm returns xt as its output x̂ in this case,
so that again we have f?(x̂) = 1 = supx f

?(x). The only remaining case is the situation with
f? = 0. In this case, the algorithm returns xt as its x̂, but in fact any choice of x̂ would be
optimal, since f?(x̂) = 0 = supx f

?(x) in the case of f? = 0. Thus, in every case, we guarantee
f?(x̂) = supx f

?(x), and the algorithm pulls t− 1 arms.
To conclude the proof, we prove the complementary lower bound: that is, M(ε) ≥ τ0

F −1. Let t
be any finite natural number with t < τ0

F . LetA be any deterministic learning algorithm that makes
at most t−1 queries; for simplicity, we suppose the algorithm always makes t−1 queries (otherwise
we can make additional queries that are subsequently ignored to bring it up to t−1 total). consider a
hypothetical run of the algorithm in which every reward it receives has value 0, and let x1, . . . , xt−1

denote the sequence of arms it would pull in this hypothetical run, and let xt denote the arm x̂ the
algorithm would return after these t−1 queries. Since t < τ0

F , by minimality of τ0
F there must exist

some f? ∈ F \{0} such that f?(x1) = · · · = f?(xt) = 0. For this f? as the target reward function,
by induction the algorithm will indeed make as its t− 1 queries the arms x1, . . . , xt−1 in sequence,
since at any time s ≤ t− 1 it will indeed have received reward 0 for each of the arms x1, . . . , xs−1

it has previously pulled, and thus it will indeed choose xs as its next query; moreover, having pulled
the arms x1, . . . , xt−1 and received reward 0 each time, it will indeed return xt as its output arm x̂.
Thus, since f?(xt) = 0, and f? 6= 0, we see that f?(x̂) = 0 = supx f

?(x)− 1 < supx f
?(x)− ε.

This shows that for any t < τ0
F , we have M(ε) > t− 1. Therefore, M(ε) ≥ τ0

F − 1.
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5.2. Randomized Learners

Before proceeding with the discussion of learnability, we first show the relation between τ̃0
F (ε) and

σ̃F .
Proof of Lemma 5 We begin with establishing the rightmost inequality. Suppose σ̃F > 0. Let t
equal the quantity on the right hand side. Let δ ∈ (0, 1) and let Pδ be any probability measure on X
for which

inf
f∈F\{0}

Pδ(x : f(x) = 1) > (1− δ)σ̃F .

Define x1, . . . , xt as i.i.d. Pδ-distributed random variables. For any f ∈ F \ {0},

P(@i ∈ {1, . . . , t} : f(xi) = 1) = (1− Pδ(x : f(x) = 1))t < (1− (1− δ)σ̃F )t .

Since σ̃F > 0, the strict inequality 1−σ̃F < e−σ̃F holds. We can therefore choose δ > 0 sufficiently
small to satisfy 1− (1− δ)σ̃F ≤ e−σ̃F . With this choice of δ, the rightmost expression above is at
most

e−σ̃F t ≤ ε.

Thus, t ≥ τ̃0
F (ε).

Next we establish the leftmost inequality in the lemma statement. Suppose τ̃0
F (ε) < ∞. Let

t = τ̃0
F (ε) and let x1, . . . , xt be a sequence of X -valued random variables such that ∀f ∈ F \ {0},

P(∃i ∈ {1, . . . , t} : f(xi) = 1) ≥ 1− ε. Let P be the uniform mixture of the marginal distributions
of the xi random variables: that is, for measurable subsets A ⊆ X ,

P (A) =
1

t

t∑
i=1

P(xi ∈ A).

For any f ∈ F \ {0}, we have

P (x : f(x) = 1) =
1

t

t∑
i=1

P(f(xi) = 1) ≥ 1

t
P(∃i ∈ {1, . . . , t} : f(xi) = 1) ≥ 1− ε

t
,

where the first inequality is due to the union bound. Thus,

inf
f∈F\{0}

P (x : f(x) = 1) ≥ 1− ε
t

.

Moreover, by definition of σ̃F ,

σ̃F ≥ inf
f∈F\{0}

P (x : f(x) = 1).

Together, we have σ̃F ≥ 1−ε
t , or equivalently, 1−ε

σ̃F
≤ t, which establishes the leftmost inequality in

the lemma.
Finally, we address the case of σ̃F = 0 or τ̃0

F (ε) = ∞. The proof of the rightmost inequal-
ity only required σ̃F > 0, and yields the implication that τ̃0

F (ε) < ∞ in this case. On the other
hand, the proof of the leftmost inequality only required τ̃0

F (ε) <∞, and yields the implication that
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σ̃F > 0 in this case. Thus, these proofs together imply that σ̃F > 0 if and only if τ̃0
F (ε) < ∞, or

equivalently, σ̃F = 0 if and only if τ̃0
F (ε) =∞.

We are now ready for the proof of Theorem 5.
Proof of Theorem 5 For the upper bound, the algorithm pulls arms x1, . . . , xt−1. If one of them
has reward 1, it returns x̂ as that one. Otherwise it returns x̂ = xt.

For the lower bound, take any learner and let x1, . . . , xt−1 be the sequence of arms it would
pull if every reward it receives is 0, and let xt be its returned arm x̂ again in the case that all of the
rewards it receives are 0. If t < τ̃0

F (ε), there exists a choice of f? ∈ F \ {0} such that, with prob-
ability strictly greater than ε, every xi has f?(xi) = 0. In particular, in this case, the algorithm will
indeed pull arms x1, . . . , xt−1, and will indeed return x̂ = xt, and moreover this implies f?(x̂) = 0.
Thus, E[f?(x̂)] < 1− ε = supx f

?(x)− ε.

To conclude this discussion, we note that Theorem 4 now follows immediately from Theorem 5
together with Lemma 5.

5.3. Separation Between Deterministic and Randomized Learners

As mentioned above, it is interesting to note that the optimal query complexity of randomized
learners can be vastly smaller than that of deterministic learners, and indeed, Section 1.1 gives an
example of a function class that is easily learnable by randomized algorithms, but which is not
learnable by deterministic algorithms: namely, the class of indicators for sets of Lebesgue measure
1 on [0, 1].

6. A General Learning Algorithm for Real-Valued Rewards

This section presents the extension of the technique above, for binary rewards, to the case of general
[0, 1]-valued rewards. Unlike the binary-valued case, the technique presented here is not always
optimal, and in a sense this is necessary, given Theorem 1.

As we did for the case of binary-valued rewards, we present results for deterministic and ran-
domized learners separately.

6.1. A Deterministic Learner

The following algorithm extends the zero-teaching set idea to general level sets, together with a
search for the appropriate level set cut-off.

Algorithm Adet(F , Q, ε):
0. q ← 0, V ← F , rmax ← 0, let xmax ∈ X arbitrary
1. For r∗ = (1/2)ε, ε, (3/2)ε, 2ε, . . .

⌈
2−ε
ε

⌉
ε
2

2. Let Sr∗ be a minimal specifying set for level r∗ wrt V
3. For each x in St
4. Pull arm x and get reward r; q ← q + 1
5. Let V ← {f ∈ V : f(x) = r}
6. If r > rmax, set (xmax, rmax)← (x, r)
7. If q = Q, Return xmax 8. Return xmax
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We have the following query complexity bound for this algorithm.

Theorem 10 For any f? ∈ F and ε ∈ (0, 1), for any Q ≥
⌈

2τF (ε)
ε

⌉
, Adet(F , Q, ε) makes at most

Q queries and returns a point x̂ ∈ X with f?(x̂) ≥ supx f
?(x)− ε.

Proof First note that, for any nonempty V ⊆ F , τ(Vc, c − ε) ≤ τ(Fc, c − ε) (by monotonicity of
the max function). In particular, on any given round t, we have

|St| ≤ τ(Vr̂∗t , r̂
∗
t − ε) ≤ τF (ε).

From this, and the fact that the algorithm only has
⌈

2
ε

⌉
rounds, the stated value of Q suffices for the

guarantee on x̂.

The upper bound of Theorem 6 follows immediately from this.

6.2. A Randomized Learner

In this section we present a randomized learner for general bounded real-valued bandit problems.
As was true of the binary-valued case in Section 5.2, the corresponding analysis offers significant
improvements compared to the deterministic learner above.

We will show that the query complexity bound in Theorem 8 is achieved by the following
algorithm.

Algorithm Arand(F , Q, ε):
0. q ← 0, V ← F , rmax ← 0, let xmax ∈ X arbitrary
1. For r∗ = (1/2)ε, ε, (3/2)ε, 2ε, . . .

⌈
2−ε
ε

⌉
ε
2

2. Let Sr∗ be a minimal randomized (r∗− ε
4 ,

ε
2)-level specifying set for Vr∗

3. For each x in Sr∗
4. Pull arm x and get reward r; q ← q + 1
5. Let V ← {f ∈ V : f(x) = r}
6. If r > rmax, set (xmax, rmax)← (x, r)
7. If q = Q, Return xmax

8. Return xmax

We have the following query complexity bound for this algorithm.

Theorem 11 For any f? ∈ F and ε ∈ (0, 1), for any

Q ≥ 2τ̃F (ε/4, ε/2)

ε
,

Arand(F , Q, ε) makes at most Q queries and returns a point x̂ ∈ X with

Ef?(x̂) ≥ sup
x
f?(x)− ε.
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Proof First note that, for any nonempty V ⊆ F , the minimal size of a randomized (c − ε, δ)-
level specifying set for Vc is no larger than that for Fc (by monotonicity of the max function). In
particular, on any given round, we have

|Sr∗ | ≤ τ̃F (ε/4, ε/2).

Since there are at most 2/ε rounds, the size of Q in the theorem suffices to complete all rounds.
Also note that we always have f? ∈ V . Moreover, note that the largest r∗ in the algorithm for
which supx f

?(x) ≥ r∗ has size at least supx f
?(x) − ε/2. Thus, for that round of the algorithm,

by definition of Sr∗ , with probability at least 1− ε/2, Sr∗ contains at least one arm x with f?(x) ≥
r∗ − ε/4 ≥ supx f

?(x) − ε/2. In particular, on this event, this implies that the returned x̂ = xmax

upon termination satisfies f?(x̂) ≥ supx f
?(x)− ε/2. Thus, since this fails only with probability at

most ε/2, we have
Ef?(x̂) ≥ sup

x
f?(x)− ε.

As with the binary case, there exist function classes that are not learnable deterministically, but
which are quite learnable by simple randomized learners. The same example given there remains
valid: i.e., F as indicators of all measurable subsets of [0, 1] having Lebesgue measure 1.

The above completes the proof of Theorem 8 stated in Section 1.1. To complete the proof of
Theorem 7 from that section, it suffices to prove the relation between τ̃F (ε, δ) and σ̃F (ε) stated in
Lemma 9.
Proof of Lemma 9 We begin with establishing the rightmost inequality. Suppose ε, δ ∈ (0, 1), and
suppose σ̃F (ε) > 0 (so that the right inequality is non-vacuous). Let t equal the quantity on the
right hand side. Let γ ∈ (0, 1) and let Pγ be any probability measure on X for which

inf
c∈(0,1]

inf
f∈Fc

Pγ(x : f(x) ≥ c− ε) > (1− γ)σ̃F (ε).

Define x1, . . . , xt as i.i.d. Pγ-distributed random variables. For any c ∈ [0, 1] and f ∈ Fc,

P
(

max
1≤i≤t

f(xi) < c− ε
)

= (1− Pγ(x : f(x) ≥ c− ε))t < (1− (1− γ)σ̃F (ε))t .

Since σ̃F (ε) > 0, the strict inequality 1− σ̃F (ε) < e−σ̃F (ε) holds. We can therefore choose γ > 0
sufficiently small to satisfy 1 − (1 − γ)σ̃F (ε) ≤ e−σ̃F (ε). With this choice of γ, the rightmost
expression above is at most

e−σ̃F (ε)t ≤ δ.
Thus, t ≥ τ̃F (ε, δ).

Next we establish the leftmost inequality in the lemma statement. Suppose τ̃F (ε, δ) < ∞ (so
that the inequality is non-vacuous). Let t = τ̃F (ε, δ) and for some c ∈ [0, 1] let x1, . . . , xt be a

sequence of X -valued random variables such that ∀f ∈ Fc, P
(

max
1≤i≤t

f(xi) ≥ c− ε
)
≥ 1 − δ.

Let P be the uniform mixture of the marginal distributions of the xi random variables: that is, for
measurable subsets A ⊆ X ,

P (A) =
1

t

t∑
i=1

P(xi ∈ A).
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For any f ∈ Fc, we have

P (x : f(x) ≥ c− ε) =
1

t

t∑
i=1

P(f(xi) ≥ c− ε) ≥
1

t
P
(

max
1≤i≤t

f(xi) ≥ c− ε
)
≥ 1− δ

t
,

where the first inequality is due to the union bound. Since this argument holds for any choice of c,
we have

inf
c∈(0,1]

inf
f∈Fc

P (x : f(x) ≥ c− ε) ≥ 1− δ
t

.

Moreover, by definition of σ̃F (ε),

σ̃F (ε) ≥ inf
c∈(0,1]

inf
f∈Fc

P (x : f(x) ≥ c− ε).

Together, we have σ̃F (ε) ≥ 1−δ
t , or equivalently, 1−δ

σ̃F (ε) ≤ t, which establishes the leftmost inequal-
ity in the lemma.

7. Open Problems

We conclude this work by stating some important open problems.

Decidability of Binary Bandit Learnability: First, we have shown that general bandit learning
problems can be undecidable within ZFC. However, we also provided a concise characterization of
bandit learnability in the case of binary-valued bandits. This raises a natural question:

Is bandit learnability decidable within ZFC for all binary-valued bandit problems?

Decidability of Bandit Learnability with Noise: A second important direction for study is bandit
learnability with noise. Namely, it is common to consider the rewards rt(x) from pulling each arm
x (on round t) to be independent random variables (independent across multiple rounds pulling
arm x as well). In this case, f?(x) is the conditional mean: f?(x) = E[rt(x)]. In this case,
f? ∈ F corresponds to a well-specified model assumption. Let us still suppose rt(x) takes values
in a bounded range (say, [0, 1] without loss of generality). The objective of bandit learning then is
that, withinM(ε) queries (observing the rt(xt) values for the query sequence xt, chosen adaptively,
observing the past rt′(xt′), t′ < t, values when selecting xt), the learner should return x̂ such that
E[f?(x̂)] ≥ supx f

?(x) − ε: i.e., it nearly optimizes the conditional mean reward. We say a given
(X ,F) is learnable in the bandit setting with noise under the well-specified model assumption if this
is achievable for all f? ∈ F (with finite query complexity M(ε), for all ε > 0, by some algorithm
A) for all t-invariant distributions for each rt(x) ∈ [0, 1] subject to f?(x) = E[rt(x)] for all x ∈ X .

Bandit learning with noise is potentially a harder problem than the noise-free bandit learning
problems considered in the present work. For instance, for X = N ∪ {0}, consider a countable
function class F = {fi : i ∈ N} of functions N ∪ {0} → [0, 1] such that, for x ∈ N, fi(x) =
1[x = i]. Clearly, bandit learning would be impossible for such a function class, since there is no
structure to help the search for this single arm taking the maximum value 1, while all other arms
have reward 0. However, we can add extremely helpful structure by setting the value fi(0) at 0 to
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be 2−i. Thus, while querying f?(0) never itself provides a large reward (relative to the max reward,
which is 1), it does reveal the precise identity of f?: that is, it reveals the i ∈ N for which f? = fi,
and hence also reveals the location of an x∗ = i with f?(x∗) = supx f

?(x) = 1, so that the learner
may return x̂ = x∗ after just one query (i.e., M(ε) = 1 for all ε ≥ 0). On the other hand, if we
allow noise, the learner could be denied this information. For instance, for f? = fi, the distribution
of rt(0) could be Bernoulli(2−i), while the rest could be noise-free: rt(x) = f?(x) for x ∈ N.
While indeed E[rt(0)] = 2−i = f?(0) (so that the well-specified model assumption is satisfied), for
any finite number m, there are infinitely many function f ∈ F which, with very high probability,
would simply return rt(0) = 0 for all t ≤ m, so that the learner would be unable to distinguish
among these functions, and hence would still have an infinite number of possible x ∈ N where the
x∗ maximizing f? may be. This can be made formal via the probabilistic method (for any given m,
choosing the target i at random from a sufficiently large segment of {im, . . . , i′m} for im sufficiently
large), so that the expected reward of the learner can be made arbitrarily small; we leave the details
as an exercise.

While learnability of noisy bandit problems may be more restrictive than noise-free problems,
it is also, in some sense, less delicate: that is, less dependent on precise function values in the
structure of F . This can be seen in the above example. Also for this reason, the type of construction
giving rise to our undecidability proof in Theorem 1 fails when noise is allowed. In particular, the
constructed (X ,F) in Theorem 1 is not learnable with noise, and this fact is decidable within ZFC.
This leads to the following natural question:

Is bandit learnability with noise under the well-specified model assumption always decidable
within ZFC?
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