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A B S T R A C T

Climate volatility could change in the future, with important implications for agricultural productivity.

For Tanzania, where food production and prices are sensitive to climate, changes in climate volatility

could have severe implications for poverty. This study uses climate model projections, statistical crop

models, and general equilibrium economic simulations to determine how the vulnerability of Tanzania’s

population to impoverishment by climate variability could change between the late 20th Century and the

early 21st Century. Under current climate volatility, there is potential for a range of possible poverty

outcomes, although in the most extreme of circumstances, poverty could increase by as many as 650,000

people due to an extreme interannual decline in grain yield. However, scenarios of future climate from

multiple climate models indicate no consensus on future changes in temperature or rainfall volatility, so

that either an increase or decrease is plausible. Scenarios with the largest increases in climate volatility

are projected to render Tanzanians increasingly vulnerable to poverty through impacts on staple grains

production in agriculture, with as many as 90,000 additional people entering poverty on average. Under

the scenario where precipitation volatility decreases, poverty vulnerability decreases, highlighting the

possibility of climate changes that oppose the ensemble mean, leading to poverty impacts of opposite

sign. The results suggest that evaluating potential changes in volatility and not just the mean climate

state may be important for analyzing the poverty implications of climate change.

� 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

There is substantial evidence that the mean and extremes of
climate variables have been changing in recent decades, and that
rising atmospheric greenhouse gas concentrations could cause
those trends to intensify in the coming decades (Diffenbaugh et al.,
2005; Easterling et al., 2000; IPCC, 2007). These changes are
particularly important for agriculture (Lobell et al., 2008; White
et al., 2006; Mendelsohn et al., 2007) and therefore also have
critical implications for developing countries, both because the
majority of the poor reside in rural areas where farming is the
dominant economic activity and also because the poor may spend
* Corresponding author. Tel.: +1 202 473 6454; fax: +1 202 522 1151.
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as much as two-thirds of their income on food (Cranfield et al.,
2003).

The importance of agriculture to the poor is particularly true for
Tanzania, where agriculture accounts for about half of gross
production, and employs about 80 percent of the labor force
(Thurlow and Wobst, 2003). Agriculture in Tanzania is also
primarily rain-fed, with only two percent of arable land having
irrigation facilities—far below the potentially irrigable share (FAO,
2009). Tanzanian yields, especially of staple foods like maize, are
thus particularly susceptible to adverse weather events.

This threat has been recognized by policy makers, with
Tanzania’s National Strategy for Growth and Reduction of Poverty
(United Republic of Tanzania, 2005) identifying droughts and
floods as among the primary threats to agricultural productivity
and poverty vulnerability. Tanzania’s National Adaptation Program
of Action (NAPA) reiterates the government’s recognition of the
threat of climate change posed to agricultural production (United
Republic of Tanzania, 2007). The NAPA identifies several vulner-
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Table 1
Socioeconomic distribution of Tanzania by earnings based stratum (in percent).

Stratum Stratum poverty rate Share in total poverty Share in total population

I II III

Agriculture 68.79 29.95 15.54

Rural labor 24.15 0.74 1.09

Rural diversified 51.43 30.34 21.05

Non-agriculture 23.71 10.02 15.08

Urban labor 12.24 3.40 9.91

Urban diversified 23.24 23.44 35.99

Transfers 56.01 2.11 1.35

National 35.68 100.00 100.00

Source: Authors’ estimates based on data from National Bureau of Statistics (2002).

2 The national poverty line is the basic needs poverty line defined in the
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abilities, including unpredictable rainfall and prolonged dry spells
(which are indicative of climate volatility), and lists agriculture
projects as high priority for adaptation. An example of these high-
priority agriculture projects is one that focuses on improving food
security in drought-prone areas through the adoption of drought-
tolerant crops.

There is a substantial literature examining the effects of climate
change on food security in developing countries (see review by
Dinar et al., 2008). For example, Lobell et al. (2008) used statistical
models to assess the potential impacts of future changes in the
mean climate state on crop production. In addition, Battisti and
Naylor (2009) used historical examples to highlight the significant
impact that changes in the frequency of heat stress may have on
agricultural output. In both cases, analyses of food insecurity are
driven by inferred declines in food supply. However, food
insecurity and famines are influenced by forces that constrain
people’s access to food, and not just its availability (Sen, 1981;
Schmidhuber and Tubiello, 2007).

One such force is that of food prices, which have seen
considerable volatility in recent years, and which is estimated to
have increased poverty by 105 million people during the recent
food price crisis of 2005–2008 (Ivanic and Martin, 2008). Recently,
Ahmed et al. (2009) provide evidence through a cross-country
analysis that extreme climate events which reduce agricultural
productivity can severely increase poverty in Sub-Saharan African
countries. Climate induced changes in agricultural productivity
thus may have severe implications for poverty through price and
income effects. In the approach of Ahmed et al., future agricultural
variability was determined by scaling late 20th Century (‘‘current’’)
variability by a scaling factor based on projected future climate
volatility changes relative to current volatility. The link between
climate variables and agricultural yields in this earlier work was
thus based on extrapolation and lacked a tight connection between
the two sets of variables.

Understanding the effects of climate volatility on crop
production and food prices is thus critical to understanding the
potential impacts of future climate change on poverty. However,
few studies have focused on the economic effects of changes in the
volatility of climate variables and the impacts on the poor. Thus,
despite its expected significance for developing countries like
Tanzania, the effects of changes in climate volatility on agriculture
and development are not well-understood.

This paper fills an important gap in the literature by developing
a quantitative framework that permits us to examine the
vulnerability of Tanzania’s population to impoverishment due to
interannual climate variability that affects agricultural productivi-
ty, both in recent history as well as in the near future.1 Section 2
describes the poverty profile of Tanzania, while Section 3 provides
details of climate volatility and agricultural variability between
1 Henceforth referred to as poverty vulnerability.
1971 and 2031. Section 4 subsequently analyzes Tanzania’s
poverty vulnerability, while Section 5 concludes.

2. Poverty profile of Tanzania

Following the approach of Hertel et al. (2004), the population as
a whole can be divided into seven distinct strata, reflecting the
pattern of household earnings specialization: Agricultural self-
employed (more than 95 percent of income from farming), non-
agricultural (more than 95 percent of income from non-agricul-
tural self-employment), urban labor (more than 95 percent of
income from wage labor), rural labor (more than 95 percent of
income from wage labor), transfer dependent (more than 95
percent of income from transfer payments), urban diverse, and
rural diverse. As determined by the Household Budget Survey
2000/2001, there were 12.3 million Tanzanians living below the
national poverty line in 2001 (National Bureau of Statistics, 2002).2

Table 1 reports some key estimates of the structure of poverty
in Tanzania, based on Tanzania’s national poverty line and the
2001 household survey (National Bureau of Statistics, 2002). The
rows in this table correspond to the seven strata and are therefore
exhaustive of the Tanzanian population. The first column reports
the poverty headcount rate in each stratum. This shows that the
overall poverty headcount in Tanzania was about 36 percent. The
estimated headcount rate was highest in the agriculture-special-
ized stratum (68 percent), followed by the transfer-dependent
households (56 percent), the rural diversified stratum (51 percent)
and then rural labor, urban diversified, non-agriculture self-
employed and urban labor. Based on these figures, it is not
surprising that the agriculture, transfer and rural diversified
households all account for a larger share of the total poor in
Tanzania (column II) than in the total population (column III).
Taken together, the agricultural specialized and rural diversified
households account for about 60 percent of total poverty in
Tanzania.

From Thurlow and Wobst (2003), we know that grains are
among the most important crops for impoverished Tanzanian
households, both from an earnings and a consumption perspective.
Volatility in the productivity of the grains sector will thus have
different poverty implications for each of the seven strata of
Tanzania’s poor. For example, a drought will reduce agricultural
productivity, and push up food prices. To a first-order approxima-
tion, whether a particular household gains or loses real income
from this change depends on whether it is a net buyer or seller of
the commodity. Higher prices will clearly push up the cost of living
at the poverty line for non-agricultural households. However, the
degree to which this will occur depends on what happens to the
Household Budget Survey 2000/01 (National Bureau of Statistics, 2002), and is TShs

7253 (2001) without correcting for Purchasing Power Parity.



Table 2
Difference between climate in Tanzania in the late 20th and early 21st Centuries as determined by the period average and standard deviation values of bias-corrected

temperature and precipitation by GCM.

GCM name GCM code Percent difference in the average value in the 21st

century from the average value in the 20th century (%)

Percent difference in the standard deviation in the 21st

century from the standard deviation in the 20th century

(%)

Bias-corrected average

monthly growing

season temp.

Bias-corrected

average monthly

growing season

precip.

Annual average

grains yield

Average monthly

growing

season temp.

Average monthly

growing season

precip.

Annual average

grains yield

I II III IV V VI VII VIII

bccr_bcm2_0 01 1.20 (0.27) 7.21 11.72 �21.46 �4.54 �11.90

cccma_cgcm3_1 02 1.68 (0.38) 20.86 15.81 �29.40 28.09 3.28

cccma_cgcm3_1_t63 03 3.52 (0.80) 11.11 6.78 4.72 1.97 5.05

cnrm_cm3 04 3.52 (0.80) 1.99 3.17 43.29 24.37 34.21

csiro_mk3_0 05 1.17 (0.26) 3.38 10.28 37.60 14.45 18.72

gfdl_cm2_0 06 2.67 (0.60) 11.02 9.12 45.14 12.28 19.04

gfdl_cm2_1 07 1.72 (0.39) 0.12 7.46 �14.89 �19.68 �17.91

giss_aom 08 3.82 (0.86) 3.14 2.78 �8.07 �28.34 �22.84

giss_model_e_h 09 3.69 (0.83) 6.06 4.31 31.72 16.43 21.61

iap_fgoals1_0_g 10 1.70 (0.38) 0.32 7.59 �6.40 �7.60 �2.74

ingv_echam4 11 2.13 (0.48) 1.89 7.00 �8.90 7.47 5.07

inmcm3_0 12 3.53 (0.80) 11.12 6.76 9.87 6.87 �23.27

ipsl_cm4 13 3.34 (0.76) 5.13 4.91 10.33 0.93 9.69

miroc3_2_hires 14 4.90 (1.11) 8.12 1.75 19.35 7.07 5.06

miroc3_2_medres 15 2.33 (0.53) 3.74 7.18 26.51 1.31 �14.85

miub_echo_g 16 1.71 (0.39) 1.81 8.15 �3.58 �15.23 �7.32

mpi_echam5 17 0.88 (0.20) �1.74 9.06 25.84 �6.18 1.50

mri_cgcm2_3_2a 18 1.99 (0.45) �1.26 6.15 32.97 �8.10 �0.11

ncar_ccsm3_0 19 4.07 (0.92) 17.18 7.67 4.21 �10.38 �25.56

ncar_pcm1 20 2.80 (0.63) �0.64 4.14 �5.64 �18.57 �13.84

ukmo_hadcm3 21 2.01 (0.45) �10.42 2.46 �2.98 �10.95 �16.56

ukmo_hadgem1 22 3.20 (0.72) �4.54 1.47 29.98 �14.63 �4.58

Average 2.62 (0.59) 4.35 6.62 10.01 �1.04 �1.74

Average absolute 2.62 (0.59) 6.04 6.62 19.22 12.06 12.94

Sign consistency 1.00 0.72 1.00 0.52 �0.09 �0.13

Source: Authors’ estimates and processing of Meehl et ?al. (2005).

Note: Sign consistency is the ratio of the average to the average of absolute values and is bounded by �1 and +1. A value of 1.0 indicates that the models all agree that the

variable in question will rise, and conversely for a sign consistency measure of �1.0. The numbers in parentheses in column III indicate the difference in growing season

average temperature between the 20th Century and 21st Century in 8C.

3 Please see Appendix A for details on bias-correction.
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wages earned by these households. Given the labor intensity of
agriculture in Tanzania, any shock to agriculture is likely to have an
impact on unskilled wages in the economy.

It is thus difficult to ascertain, in the absence of more specific
knowledge of the situation, how climate volatility affects poverty,
and empirical methods are necessary. For a comprehensive
analysis of the poverty implications of prospective climate
volatility changes over the course of the 21st Century, we have
developed an analytical framework that incorporates climate
variables, analyses of crop production, and economy-wide, market
equilibria, as described in the following section.

3. Climate volatility and agricultural productivity

The analytical framework used in this paper relies on several
empirical methods implemented in sequence in order to shed light
on the sensitivity of poverty in Tanzania to changing climate
volatility. The first step in this process involves understanding how
the distributions of key climate variables—temperature and
precipitation—are likely to change in the future, and what those
changes imply for the distribution of interannual agricultural
productivity changes. In this study, we are particularly interested
in climate volatility as reflected in the magnitude of year-on-year
changes in productivity.

We draw on Phase 3 of the Coupled Model Intercomparison
Project (CMIP3) archive of General Circulation Model (GCM)
experiments (Meehl et al., 2005, 2007) to obtain Tanzania’s
nationally averaged precipitation (in mm/day) and temperature
(in 8C) by month, for the years between 1971 and 2031. These data
are drawn from an ensemble of 22 different GCMs. The period
1971–2001 characterizes the late 20th Century, while the period
2001–2031 characterizes the early 21st Century (under the SRES
A2 emissions scenario). These data are aggregated to provide
monthly average precipitation and temperature data series over
the January–June growing season for grains, which are then
recalibrated so that their mean and standard deviations in the
historical period match those of the observed data.3

Several important insights may be obtained by analyzing the
bias-corrected growing season temperature and precipitation data
for Tanzania between the two time periods and across the 22
GCMs. All the models agree that the average January–June growing
season temperatures in the early 21st Century are going to be
higher than in the late 20th Century should greenhouse gas
concentrations continue to rise (column III of Table 2), with the
growing season average temperature increasing by 0.2–1.11 8C
across the 22 GCMs (8C differences in parentheses). In a similar
vein, most models agree that the average growing season
precipitation will also be higher (column IV of Table 2). When it
comes to the question of changes in their volatility—measured as
the standard deviation across the period’s time series—the models
are found to agree less on temperature and not at all on
precipitation (columns VI and VII of Table 2).

In order to capture the bounds of the GCM-based climate
projections in the subsequent analyses of agricultural productivity
and poverty vulnerability, we identify the GCMs that exhibit the
greatest and smallest changes in climate volatility. GCM 02 is



Table 3
Estimation results for Tanzanian grains yield functions; dependent variable is yield (tonnes per hectare).

Coefficients Maize Rice Sorghum

Intercept 4.5705 (9.245) �87.5692 (�4.111) 2.2699 (6.345)

Year 0.0476 (4.402)

Precipitation (mm/month average for January–June growing season) 0.0048 (5.597) 0.0049 (4.166) 0.0021 (3.909)

Temperature (8C average for January–June growing season) �0.1656 (�7.364) �0.2817 (�7.318) �0.0673 (�4.062)

Adjusted R-squared 0.209 0.181 0.074

Source: Authors’ estimates.

Note: The t-statistics are in parentheses and all estimates are significant at least at the 0.01 level of confidence.

4 Selected due to reliable production data availability, representing 93 percent of

cereals production (FAO, 2009).
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found to display both the greatest increase in precipitation
volatility and the largest decrease in temperature volatility.
GCM 06 and GCM 08 exhibit the greatest increase in temperature
volatility and the largest decrease in precipitation volatility,
respectively.

Climate data from these series alone, however, are insufficient
to tell us how variability in agricultural productivity will change.
We therefore empirically determine the crop productivity
response to temperature and precipitation. A widely used
statistical approach is the Ricardian technique pioneered by
Mendelsohn et al. (1994). This approach has been applied to
examine the impact of climate change on African agriculture—
albeit not for Tanzania—as reviewed in Dinar et al. (2008), and in
various other studies (see Kurukulasuriya et al., 2006; Kuruku-
lasuriya and Mendelsohn, 2007). The Ricardian approach takes
advantage of climate variation across space to estimate the impact
of decadal-scale climate outcomes on land rents or net returns. It
presumes equilibrium in the land markets such that the
‘‘Ricardian’’ returns to land fully reflect differences in the impact
of climate on agricultural productivity in all relevant uses across
locations. We believe these are overly strong assumptions in the
context of Tanzania—particularly given our emphasis on inter-
annual changes in temperature and precipitation.

Empirical work in Sub-Saharan Africa and elsewhere suggests
that climate risks are an important determinant of household
behavior. Dercon (2006) reports that drought was the predominant
source of source of income and asset loss for rural households in
Ethiopia. Households which experienced a drought in the last two
years showed an average consumption reduction of 16 percent.
The production strategy pursued by rural households to minimize
the impact of climate risk depends importantly on household
wealth. In a case study of South African farmers, Ziervogel et al.
(2006) found that wealthier households tended to specialize more,
thereby raising their expected returns from a given amount of land.
In their path-breaking work on Indian poverty, Rosenzweig and
Binswanger (1993) found that increasing the coefficient of
variation of rainfall by one standard deviation reduced farm
profits for the poorest households by 35 percent, while leaving the
richest households expected profits unchanged. Clearly inter-
annual variation climate shocks are disproportionately important
for the poor and this fact is not reflected in simple Ricardian
analysis. Therefore, we combine our economic model of poverty
with time series estimation of crop yields, with annual tempera-
ture and precipitation among the explanatory variables (e.g. Lobell
et al., 2006, 2008).

To that end, monthly climate data from the CRU TS 3.0 dataset
(Climate Research Unit, 2008) were used in linear regression
models to analyze the relationship between mean temperature
(8C) and precipitation (mm/month), and crop yields for several
grains. This analysis was done at the sub-national level, more
specifically at the administrative region level from 1992 to 2005.
The climate data were also adapted to the growing season calendar
as provided by the Famine Early Warning Systems NETwork (FEWS
NET, 2008). Based on this calendar, we used a single growing
season for maize, sorghum, and rice,4 extending from January to
June and the 0.58 gridded climate data were averaged temporally
over this 6-month period and as well as spatially for each
administrative region.

For each crop, data on harvested area and production from the
Tanzanian Ministry of Agriculture as well as from Agro-MAPS
(Monfreda et al., 2009) were compiled for each of the 17 regions
and converted to yields (tonnes per hectare). These data were
available from 1992 to 2005. Forward stepwise multiple linear
regression models were developed for each of the three crops
linking yields to mean temperature and precipitation while
accounting for temporal trends. Inclusion of higher order terms
(e.g. temperature squared) would be appealing but is not
supported by the limited time series data available for Tanzania.
A few observations were removed from the analysis as they
presented unusual yield values which were likely the result of
reporting errors. Harvested areas were used as weights in the
fitting process.

The analysis finds that when considering yields as functions of
climate, the temperature coefficients are negative, while the
coefficients for precipitation are positive (Table 3). Coefficients on
both climate variables are highly significant in all models. That is,
rising temperatures will put downward pressure on grain yields,
while rising precipitation will enhance yields. An increase in
average growing season precipitation by 1 mm/month is enough to
increase maize and rice yields by 0.005 tonnes per hectare, and
sorghum yields by 0.002 tonnes per hectare. Temperature has the
smallest effect on sorghum yields (coefficient of �0.07 tonnes per
hectare) and the greatest on rice yields (coefficient of�0.28 tonnes
per hectare). The effect on maize yield of roughly 17 percent loss
per 1 8C is consistent with earlier estimates of roughly 10 percent
in the literature for Sub-Saharan Africa (e.g. Jones and Thornton,
2003). Time trends are significant only in the rice yield function,
where they are significant and positive, suggesting the presence of
ongoing technological progress.

The estimated statistical model, by being based on ex-post data,
has the added advantage of endogenizing some adaptive farmer
behavior. In any given year, it can be assumed that farmers make
production decisions such as planting, harvesting, and input use,
based on the best knowledge available to them. Among other
things, this best knowledge includes the priors they have about the
climate (e.g. knowledge of when rains are likely to arrive) as well as
information based on observation (e.g. rainy season onset has
occurred and there is optimal post-onset moisture). The historical
yields thus reflect some adaptability, as do the estimated
parameters in the statistical model.

We can now apply climate data to the coefficients estimated to
determine climate-instrumented interannual variation in yields
for each of the three grains under consideration. In addition to
climate data based on the average of the values across the 22 sets of
GCM results, we also quantify the envelope of yield predictions
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Fig. 1. Predicted grains yields in Tanzania for the period 1971–2031 explained solely by bias-corrected climate data and historically observed climate.Source: Authors’

processing of Meehl et al. (2005) and CRU TS 3.0.
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using output from GCM 02 (greatest increase in precipitation
volatility and largest decrease in temperature volatility), GCM 06
(greatest increase in temperature volatility), and GCM 08 (largest
decrease in precipitation volatility). The aggregate grains5 yield
series associated with each climate series is then obtained by
taking the weighted average of the yields across the three crops,
with the weights being the 2001 harvested area shares obtained
from FAOSTAT (FAO, 2009).

In contrast to the exception of the grain yield series based on
GCM 08, the predicted yield series from GCM 02 and GCM 06
exhibit higher volatility in the 21st Century compared to the
volatility in the 20th Century (column VIII, Table 2). Fig. 1
illustrates these series, whose interannual differences we will now
implement in our economic simulation analysis to determine
poverty sensitivity to climate in Tanzania.

4. Poverty analysis

4.1. Simulation framework

We are now in a position to analyze the poverty impacts of the
interannual productivity change distributions of the late 20th
Century and the early 21st Century. In order to estimate the
changes in consumer prices and earnings stemming from changes
to agricultural productivity due to climate effects, we employ a
widely used computable general equilibrium economic simulation
model.

We begin with the GTAP Database Version 6 (Dimaranan, 2006)
and use this with a modified version of the standard GTAP model
(Hertel, 1997). Given the primary focus in this paper on the
agricultural sector, economic behavior in that sector is of central
importance to our results. Absent strong evidence to the contrary,
we assume that farmers minimize production costs, and, given the
large number of agricultural producers in Tanzania, we assume
that they each take market prices as given. Coupled with the
assumption of ready entry and exit of farms, this results in
5 These three crops collectively proxy for the grains sector that we use in our CGE

analysis, aggregated from the paddy rice, wheat, and other grains GTAP sectors.

Details on how the maize, rice, and sorghum yields are aggregated to grains can be

found in Appendix A.
behavior which mimics constant returns to scale and perfect
competition at the sector level. Sexton and Lavoi (2001) and Sexton
and Zhang (2001) have shown that the existence of imperfect
competition in food processing markets can substantially distort
prices—as well as price transmission—compared to perfect compe-
tition, by depressing producer prices and increasing retail prices.
Furthermore, the extent of these distortions depends heavily on the
nature of imperfect competition and the number of firms involved in
any oligopoly market. Since a review of the literature does not offer
strong evidence on the nature of competition in the Tanzanian food
sector, we opt for the empirically robust assumptions of constant
returns to scale and perfect competition here as well. Clearly, this
assumption could be altered as more evidence becomes available on
the nature of market structures in the food sector.

Following the methodology of Keeney and Hertel (2005), we also
model factor market segmentation, which is important in countries
where the rural sector remains a dominant source of poverty. Farm
and non-farm mobility of factors are restricted by specifying a
constant elasticity of transformation function which ‘‘transforms’’
farm employed versions of labor and capital into non-farm uses and
vice-versa. This allows for persistent wage differences between the
farm and non-farm sectors, and is the foundation of the inter-
sectoral distributional analysis. In order to parameterize these factor
mobility functions, we draw on the Organization for Economic
Cooperation and Development (2001) survey of agricultural factor
markets. We assume a constant aggregate level of land, labor, and
capital employment reflecting the belief that the aggregate supply of
factors is unaffected by climate change.

The model is also adjusted to distinguish between agricultural
land with different biophysical characteristics, following the
approach of Hertel et al. (2009a), distinguishing land by Agro-
Ecological Zone (AEZ), based on the data of Lee et al. (2009) and
Monfreda et al. (2009). The model is then calibrated such that
simulations of estimated historical productivity volatility of grains
for the 1971–2001 period replicate observed historical price
volatility.6

In order to link price changes in the CGE model to poverty, we
use the household model of Hertel et al. (2004) to examine
6 Please see Appendix B for details of model calibration.
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households in the neighborhood of the poverty line. That study
used the AIDADS (An Implicitly Directly Additive Demand System)
consumer demand system of Rimmer and Powell (1996) to
determine household consumption and the household’s maximum
possible utility for a given set of prices and income. For poverty
analysis, the utility of the household at the poverty line is then
defined as the poverty level of utility. If an adverse climate shock
pushes household’s utility below this level, they enter poverty.
Conversely, if they are lifted above this level of utility, they are no
longer in poverty.

The framework of Hertel et al. (2004, 2009b), and that which
this paper adopts, uses the AIDADS system to represent consumer
preferences. This choice is based on AIDADS strength in capturing
food expenditure patterns across the income spectrum (Verma
et al., 2009), and for its ability to perform well out of sample when
compared to other demand systems (see Cranfield et al., 2002,
2003)7. Reflecting its suitability for poverty analysis is that AIDADS
devotes two-thirds of its parameters to characterizing consumer
behavior at very low levels of income. Estimation of this demand
system is undertaken using the 80 country, per capita consumption
data set offered by Version 6.1 of the GTAP database, also following
Hertel et al. (2004). For each commodity, we have estimates of
subsistence quantities of consumption, from which we may infer
(for average prices), budget shares at the subsistence level of
income.

The poverty line in Tanzania is set to match the observed
national poverty headcount ratio reported by the World Bank
(2006), and this in turn dictates the poverty level of utility in the
initial equilibrium. So, in the wake of a change in climate,
commodity prices and wages will adjust, household incomes will
change, as will the consumption profile of households at the
poverty line, thereby resulting in new utility level. If household
utility rises above the poverty level of utility, then it is lifted out of
poverty. Conversely, if the household utility level falls below the
poverty utility threshold, then it has become impoverished.

Eqs. (1)–(3) describe how the model can then be used to predict
the change in the national poverty rate—the percentage of the
population living below the poverty line in 2001—in percentage
points of poverty. Eq. (1) details how we compute the percentage
change in the poverty headcount ratio in Tanzania, Ĥ, in the wake
of a shock to the prices and wages in the economy (Hertel et al.,
2009b):

Ĥ ¼ �
X

s

Qses

X
j

Vp
s jðŴ

p

j � Ĉ
p
Þ (1)

The term in parentheses on the right hand side of the equation
reports the change in the real after-tax wage rate for endowment j,
by deducting the percentage change in the cost of living at the
poverty line, Ĉ

p
, from the percentage change in the after-tax Ŵ

p

j .
This real earnings term is pre-multiplied by three important
poverty-parameters which deserve additional discussion.8

The first, Vp
s j, is the share of earnings type j in total income of

households in the neighborhood of the poverty line in stratum s of
Tanzania. By definition, the earnings shares in a given stratum sum
to one and serve to determine the impact of a change in wages on
household income. For example, if there is a 10 percent increase in
the wages of unskilled agricultural labor, and imputed unskilled
wages represents 70 percent of the agricultural stratum’s
household income in the neighborhood of the poverty line, then
this wage rise will contribute 7 percent (0.70 � 10 percent) to the
stratum’s income change at the poverty line.

As seen in this simple example, implementation of Eq. (1)
requires mapping factor earnings in the general equilibrium model
7 Please see Appendix C for details of AIDADS formulation and parameterization.
8 Please see Appendix D for more details on the poverty parameters.
(e.g. agricultural unskilled wages) to income sources obtained from
the household survey (imputed returns to self-employed unskilled
labor in agriculture). In the micro-simulation analysis, self-
employed agricultural labor and capital receive the corresponding
farm factor returns from the general equilibrium model, as do non-
agricultural labor and capital. Wage labor for diversified house-
holds reported in the surveys presents a problem because
information is lacking to assign it to a specific industry.
Accordingly, we apply the composite wage for skilled or unskilled
labor determined by the general equilibrium model in these
respective labor markets. Finally, transfer payments are indexed by
the growth rate in net national income.

Summing over the share-weighted change in factor returns
yields the total real income change for households in the
neighborhood of the poverty line for a given stratum-region
combination. The real cost of living at the poverty line is obtained
by solving the demand system for the level of income required to
attain the poverty level of utility, given a vector of prices. By
solving this for the initial consumer prices and then for the post-
exogenous shock prices, we can obtain the change in the cost of
living at the poverty line, taking into account price-induced
changes in the mix of goods and services consumed.

The ensuing change in real income is, in turn, multiplied by the
second class of parameters in (1)—es: this is the estimated elasticity
of the stratum-specific poverty headcount (Hs) with respect to
income which is obtained by evaluating the density of the stratum
population in the neighborhood of the poverty line. In order to turn
these stratum changes into the estimated percentage change in
national poverty headcount, they must be weighted by each
stratum’s share in national poverty, the third class of parameters:

Qs ¼
½ðPOPs � HsÞ=POP�

H
¼ ðPOPs � HsÞP

k POPk � Hkð Þ (2)

Summing across strata, we thus obtain the percent change in
national poverty headcount, Ĥ. By multiplying Ĥ with the national
poverty rate we ultimately obtain the percentage point change in
the national poverty rate due to changes in factor earnings as well
as the cost of living at the poverty line, dh:

dh ¼ Ĥ� 100� H

POP

� �
(3)

If this rises by one percentage point, then poverty has risen by one
percent of the national population, equivalent to more than
344,000 people. Such a change would indicate a very large poverty
impact in Tanzania.

4.2. Estimated poverty impacts

The assessment of poverty vulnerabilities to interannual
climate variation over different time periods is complicated by
the dynamics of the global and Tanzanian economies as we go
forward from the late 20th Century to the early 21st. By 2031, the
composition of Tanzanian poverty, as well as the household
earnings sources and expenditure patterns will change in ways
that cannot be fully anticipated. We resolve this complication by
treating all economic changes as comparative static deviations
from the 2001 economy, allowing us to attribute poverty changes
solely to climate-based agricultural productivity changes, and not
any other event that may cause vulnerability to change between
climates in two different periods. Since we are interested in the
poverty impacts of interannual variability, we adopt a short run
factor market closure in which land, capital, and natural resources
are immobile across sectors. Thus we assume that a farmer has
already made all production decisions under best available
adaptive behavior in that timeframe. Adaptive responses to
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Fig. 2. Panels (A)–(E) indicate the distributions of percentage point changes in the national poverty rate in Tanzania attributable to of distribution of interannual grains

productivity changes in the 20th Century and 21st Century, based on the source of the climate data used to estimate the grains productivity changes. The middle dark lines

indicate median values, while the edges of the boxes describe the first (Q1) and third (Q3) quartiles. The left whiskers indicate the greater of the lowest values and

Q1 � 1.5 � (interquartile range). The right whiskers indicate the lesser of the greatest value and Q3 + 1.5 � (interquartile range).Sources: Authors’ estimates.
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unexpected circumstances that take extended periods of time to
implement—such as digging canals for irrigation after the rainy
season has commenced—is not possible within the context of the
inter-annual changes analyzed here.

Tanzanian poverty vulnerability to interannual climate volatil-
ity between 1971 and 2031 is determined by simulating the
interannual productivity change for each year of the four (GCM-
based) predicted yield series, generating a change in the poverty
rate for each of those years by series. Bear in mind that all
simulations are perturbations from our 2001 base year, and the
resulting poverty rate changes are solely those due to climate
realizations. This has the essential property of rendering our
results comparable across years. For each climate-yield series that
we consider, we thus have a time series of poverty impacts that are
the result of simulating climate-instrumented productivity
changes from 1971 to 2031.

We now analyze the distributions of these series of poverty
changes. Based on the climate data that are the average across the
22 GCMs, we find that the median poverty change—measured as
the percentage point difference from the national poverty rate in
2001—is higher in the early 21st Century than in the late 20th
Century (panel A, Fig. 2). In the 20th Century, this median poverty
change was �0.06 percent of the population which represents a
small poverty decrease. However, in the 21st Century, the median
poverty change was �0.01 percent—a smaller decrease in the
poverty rate. The 0.05 percentage point difference is equivalent to
approximately 17.23 thousand people. There are fewer years in the
future when climate outcomes would have been poverty decreas-
ing than under current climate, as evidenced by a rightward (i.e.
poverty increasing) shift of the mass of the interannual poverty
change distribution.

The ensemble mean of the 22 GCMs (which is bias-corrected to
the historical mean and interannual standard deviation) thus
suggests that changes in temperature and precipitation volatility
could have the net effect of increasing poverty vulnerability, with
the distribution shifting in the positive direction (panel A, Fig. 2).
However, near-term, decadal-scale climate prediction remains one
of the most challenging problems in climate science (e.g. Keen-
lyside et al., 2008), and it is thus unclear exactly how Tanzanian
climate volatility will change in the next two decades. Nonetheless,
the CMIP3 GCM ensemble does provide some quantification of the
envelope of potential change based on different representations of
climate system processes and ‘‘initial conditions’’ (for a discussion
of sources of uncertainty in regional climate change, see Giorgi et
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al., 2008). We therefore also analyze the pooled and individual
GCM realizations that represent the bounds of changes in
temperature and precipitation volatility.

Panel B of Fig. 2 demonstrates the robustness of the ensemble
mean results to the variation in the climate data across the GCMs
that define the bounds of potential changes in temperature and
precipitation volatility. For each period, the poverty results from
GCM 02, 06, and 08 were pooled to give a poverty distribution that
considered climate data from GCMs where climate volatility
increased and decreased the most. We continue to find that the
mass of the poverty change distribution shifts rightward in the
future relative to the 20th Century—although the shift is more
marked than in panel A—implying that climate outcomes in the
future will be more frequently poverty increasing.

The poverty distributions for the 20th and 21st Centuries that
are based on the individual GCMs that characterize the upper and
lower bounds of the climate volatility changes (panels C, D and E of
Fig. 2) demonstrate a shift in the probability mass in the more
aggregated climate–poverty results due to shifting median values,
the inter-quartile range, or both. The use of individual GCMs also
reveals the possibility of even larger poverty headcount changes
under plausible climate outcomes. Poverty results based on GCM
02, 06, and 08 indicate that the years with the greatest poverty
increases may see more than 2 percent of Tanzania’s total
population—equivalent to nearly 700,000 people—become impo-
verished.

In analyzing GCM 02, which shows the greatest increase in
precipitation volatility as well as the largest decrease in tempera-
ture volatility (Table 2), we see that the median poverty value and
the left tail of the distribution shift in the positive (poverty
increasing) direction, and that the right tail of the distribution
becomes substantially more positive (panel C, Fig. 2). Analyzing
GCM 06, which shows the greatest increase in temperature
volatility (Table 2), we see that the right ‘‘whisker’’ of the poverty
change distribution is higher for the 21st Century than in the 20th
Century, although the left tail and lower quartile both become
more negative (panel D, Fig. 2). This change in the distribution
suggests that, in response to the greatest increase in temperature
volatility, there are many more years with very large poverty
increases. This highlights the potential importance of changes in
climate volatility for poverty vulnerability, even when there is
little change in the median poverty value. For GCM 02 and GCM 06,
the median poverty change increases by 0.26 and 0.07 percentage
points of the national poverty rate, respectively. Based on
Tanzania’s 2001 population, these 0.26 and 0.07 percentage point
increases in the poverty rate would translate into 89.7 and 24.3
thousand additional poor.

Alternatively, when analyzing GCM 08, which shows the largest
decrease in precipitation volatility (Table 2), we see that the
poverty distribution contracts, with the median and right whisker
being lower in the future than in the 20th Century (panel E, Fig. 2).
However, even though the median poverty change decreased for
GCM 08, the mass of the poverty change distribution shifted
rightward, with the first quartile value poverty change increasing
by 0.21 percentage points of the poverty rate, and the third quartile
value increasing by 0.04 percentage points. Nonetheless, the
results of this GCM realization lie in contrast to those from the
whole GCM ensemble and from the other boundaries of the
ensemble–envelope, highlighting the uncertainty in the impacts of
climate volatility on poverty.

The distributions of poverty changes based on individual
GCM realizations also illustrate that the extreme poverty
outcomes can be substantial. Under 20th Century climate, the
poverty headcount can increase by more than 2 percent of the
population (approximately 650,000 people) due to an extreme
interannual decline in grain yield. Estimates based on certain
GCMs—such as GCM 06—shows that extreme poverty-increasing
outcomes have greater magnitude in the 21st Century than in
the 20th Century. In the 20th Century, the greatest predicted
increase in poverty was of 880,000 people (2.6 percent of the
population), while in the 21st Century, the highest possible
poverty increase was of 1.17 million people, equivalent to 3.4
percent of the Tanzanian population.

While the exact realization of the climate system over the next
two decades is unknown, the poverty results from the overall
CMIP3 GCM ensemble suggest slightly increasing poverty vulner-
ability in Tanzania. However, if the real climate system displays
behavior similar to GCM 08 over the next two decades, then
poverty vulnerability could instead decrease by some measures.
Further development of decadal-scale climate prediction techni-
ques could help to resolve the climate-based uncertainty (e.g.
Meehl et al., 2009), although it is possible that the temporal and
spatial scales being considered exceed the limits of predictability.

5. Conclusion

Climate volatility in Tanzania could increase in the future as
greenhouse gas concentrations increase (Fig. 1 and Table 2), with
agricultural productivity expected to become increasingly volatile
as well. For agriculture-dependent developing countries, where
poverty is sensitive to food production and food production is
sensitive to climate (as is the case in Tanzania), rising climate
volatility could have important implications for poverty vulnera-
bility.

We develop an analytical framework which allows us to
estimate the interannual changes in grains sector productivity
that can be attributed solely to temperature and precipitation.
We then simulate these interannual changes in a comparative
static general equilibrium simulation model, to derive the
poverty responses of the 2001 Tanzanian economy to each of
these changes. This enables us to determine how the distribu-
tion of poverty changes attributable to climate volatility in a
given 30-year period could change in the future. We apply this
framework to Tanzania’s climate in the 20th Century and
21st Century, and find that changes in climate volatility are
likely to render Tanzanians increasingly vulnerable to poverty
episodes through its impacts on staple grains production in
agriculture.

Individual GCM results show that climate-induced interannual
poverty increases could be as high as 650,000 in extreme cases
even under current climate volatility. The range of possible poverty
outcomes due to climate volatility is thus large, and potentially
important. Under scenarios with the greatest increase in precipi-
tation volatility and the largest changes in temperature volatility,
the median climate outcome in the future may lead to 24.3–89.7
thousand additional poor when compared with the median
poverty outcome under current climate. While this represents a
small proportion of Tanzania’s population, it is still a large number
of people. Furthermore, since future climate volatility could well
increase further as greenhouse gas concentrations rise beyond
those prescribed here, there is a danger that the poverty
vulnerability identified in this paper could intensify beyond the
horizon of our analysis, with the potential for even greater extreme
poverty outcomes.

The range of poverty headcount changes is directly linked to the
interannual yield variability. That is, lower average interannual
changes in crop yields correspond to high interannual changes in
poverty. It thus follows that policy interventions to increase
agricultural productivity, and subsequently average interannual
yield changes, would also translate into lower interannual changes
in poverty due to climate volatility. These measures would be
consistent with Tanzania’s current agricultural policy objective of
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increasing agricultural growth as stated by the Agricultural Sector
Development Strategy and its operational program (United Republic
of Tanzania, 2005)—a goal present in even more recent initiatives
like Kilimo Kwanza (‘‘Agriculture First’’) (Tanzania Business Council,
2009). These initiatives to increase agricultural productivity will
have to account for changes in the climate more generally, such as
through updates to crop calendars and improved crop varieties to
account for changing rainfall patterns (Munishi, 2009).

Several factors not considered in the current study may also be
important for refining adaptation strategies to adapt to climate
impacts in Tanzania. One is that crops may be more or less
sensitive than the values inferred by our yield estimation, as these
statistical estimates are subject to some uncertainty. Although
most studies, including this one, focus on uncertainties in climate
scenarios, uncertainties in crop responses can be equally important
for projecting near-term impacts (Lobell and Burke, 2008).

In addition, food prices in Tanzania will be affected to a large
degree by changes in crop productivity throughout the world, as
these will influence local prices. The current analysis implicitly
assumed negligible impacts in other regions, as a way of focusing
on the question of how much poverty volatility could be driven by
changes in local production. However, international linkages are
clearly important for projecting poverty changes (Hertel et al.,
submitted for publication), and will be incorporated into future
work.

International trade policy presents another tool that can be
used to reduce the impacts of climate volatility on agriculture and
the poor. In the short run, when resources may not be easily
reallocated across economies, open trade regimes have the
potential to reduce domestic price volatility. For example, an
open trade regime restricts the increase in food prices to the import
parity price in the event of a severe productivity shock, such as a
drought (Dorosh et al., 2007). However, Tanzania currently has an
export ban in place on grain: a policy that has the potential to
increase domestic grain price volatility by pushing grain prices
below export-parity prices in years with good harvests, with severe
implications for poor grain producers. Tanzanian trade policy thus
requires careful analysis and reform to be able to successfully
exploit beneficial climate outcomes, while mitigating the impacts
of detrimental climate. This is thus the focus of ongoing research
(Ahmed et al., 2010).
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