Middle Miocene tectonic boundary conditions for use in climate models

N. Herold, M. Seton, and R. D. Müller
EarthByte Group, School of Geosciences, University of Sydney, Madsen Building F09, Sydney, New South Wales 2006, Australia (nicholas.herold@usyd.edu.au)

Y. You
EarthByte Group, School of Geosciences, University of Sydney, Madsen Building F09, Sydney, New South Wales 2006, Australia
Institute of Marine Science, University of Sydney, Madsen Building F09, Sydney, New South Wales 2006, Australia

M. Huber
Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47906, USA

1. Introduction

Utilizing general circulation models (GCMs) for paleoclimate study requires the construction of appropriate boundary conditions. We present a middle Miocene paleotopographic and paleobathymetric reconstruction geographically constrained at 15 Ma for use in GCMs. Paleotopography and paleogeography are reconstructed using a published global plate rotation model and published geological data. Paleobathymetry is reconstructed through application of an age-depth relationship to a middle Miocene global digital isochron map, followed by the overlay of reconstructed sediment thickness and large igneous provinces. Adjustments are subsequently made to ensure our reconstruction may be utilized in GCMs.

Components: 5456 words, 6 figures, 2 tables.

Keywords: paleotopography; paleobathymetry; general circulation models.

Index Terms: 1622 Global Change: Earth system modeling (1225); 8157 Tectonophysics: Plate motions: past (3040); 3040 Marine Geology and Geophysics: Plate tectonics (8150, 8155, 8157, 8158).

Received 4 April 2008; Revised 15 July 2008; Accepted 13 August 2008; Published 16 October 2008.

tion [e.g., Sewall et al., 2007]. Here we present a global reconstruction of paleotopography and paleobathymetry geographically constrained at 15 Ma (the middle Miocene), and describe the method through which it was developed. Following others [Markwick, 2007; Sewall et al., 2007], it is our intent that this reconstruction provide a common boundary condition among research groups modeling middle Miocene climate, and is available from the authors in the various forms presented in this paper.

2. Methods

2.1. Paleogeographic and Paleotopographic Reconstruction

Our middle Miocene paleogeography is based on an underlying plate kinematic model [Müller et al., 2008a, 2008b], which quantitatively describes the relative motions between tectonic plates in a moving Indian/Atlantic hot spot reference frame [O’Neill et al., 2005]. The moving hot spot reference frame accounts for motion between hot spots, producing an improved measure of fit between paleomagnetic data and the locations of hot spots and hot spot trails. This is in contrast to the fixed hot spot reference frame [e.g., Müller et al., 1993] used extensively in previous reconstructions. Additionally, previous studies have obtained paleogeographic data by digitising shorelines from existing paleogeographic maps, primarily using the PALEOMAP project [e.g., Bice et al., 2000; Sewall et al., 2007], or by using unpublished rotations to reconstruct the continents at a particular time with little explanation on how the rotation model was derived [e.g., Markwick and Valdes, 2004]. The details of our rotation model are described by Müller et al. [2008a, 2008b] and include a table of all plate rotations enabling examination and replication of our geographic reconstructions.

Using our global rotation and plate model, we isolate and subsequently rotate individual continents, continental blocks and island arcs from a present-day digital elevation model (based on ETOPO2; Figure 1) to their position at 15 Ma. Boundaries between continental and oceanic crust are based on the outlines of Müller et al. [2008b] and are interpreted from marine geophysical data including ship track magnetic and aeromagnetic data; ship track gravity and gravity anomalies from satellite altimetry [Sandwell and Smith, 1997]; ship track bathymetry, ETOPO2, and GEBCO bathymetry data; and seismic reflection data. The outlines of the island arcs are determined from gravity and bathymetry data only.

Modifications to the paleogeography and paleotopography are applied to areas where published geological data indicate substantial differences between the middle Miocene and the present (see section 3). The paleotopography is merged with our reconstructed paleobathymetry (see section 2.2) to form a global topographic and bathymetric grid constrained at 15 Ma (Figure 2). Owing to the large computing expense imposed by coupled atmosphere-ocean GCMs and the limited ability to validate high resolution pre-Quaternary climate simulations, such models have often been limited to coarse horizontal resolutions of greater than 3° × 3°. For implementation into GCMs and to aid our model required adjustments (see section 2.3), our reconstruction is
2.2. Paleobathymetric Reconstruction

Our middle Miocene paleobathymetry is constructed independent of our paleotopography and does not rely on the present-day bathymetry from ETOPO2. Instead, paleobathymetry is computed by converting age to depth using the GDH-1 age-depth relationship [Stein and Stein, 1992] using the palaeoceanic age-area distribution of Müller et al. [2008b] and estimates of sediment accumulation, sediment loading and the eruption of large igneous provinces (LIPs). This approach was first applied by Müller et al. [2008b] to compute Cretaceous to present global bathymetry maps in 1 million year intervals for determining long-term sea level variations.

Previous attempts to reconstruct paleobathymetry have mainly relied on the digital elevation models of the PALEOMAP project or on age-depth conversion constrained by Müller et al.’s [1997] present-day age grid [Markwick and Valdes, 2004]. We reconstruct the ocean basins using over 40,000 magnetic anomaly and fracture zone identifications, magnetic lineations, associated geological data, and the rotation model of Müller et al. [2008b] to create a set of seafloor-spreading isochrons from the Cretaceous to the present day. We reconstruct now subducted oceanic crust by addi-
tionally using the rules of plate tectonics and onshore geological data to predict the geometry and lateral extent of ancient spreading ridge systems. We assume symmetrical spreading when reconstructing these “synthetic” isochrons. The data at 15 Ma is then extracted to create a global seafloor spreading isochron map for the middle Miocene and is the input for the age to oceanic basement depth conversion (Figure 4a).

[6] We tested four alternative age-depth relationships to find the best approximation for the thermal structure of the oceanic lithosphere; the plate boundary layer models of GDH-1 [Stein and Stein, 1992], Crosby [2007] and Parsons and Sclater [1977], and the thermal boundary layer model of Crosby et al. [2006]. Comparisons between the present-day residual basement and each age-depth model reveal that the GDH-1 [Stein and Stein, 1992] and Crosby [2007] plate models produced the best approximation of oceanic basement depth. The Parsons and Sclater [1977] relationship and thermal boundary layer models over-predict the depth of old ocean floor (see Crosby et al. [2006] for discussion). We apply the GDH-1 model [Stein and Stein, 1992] which produces relatively similar results to the Crosby [2007] plate model, to compute basement depth of the middle Miocene ocean floor (Figure 4b):

\[
\begin{align*}
\text{If } t < 20 \text{ Ma, } & d(t) = 2600 + 365t^{1/2} \\
\text{If } t > 20 \text{ Ma, } & d(t) = 5651 - 2473 \exp(-0.0278t)
\end{align*}
\]

where \(t \) is time in millions of years and \(d \) is depth in meters.

[10] Another component of paleobathymetric reconstructions is the eruption of LIPs on the ocean floor. The morphology of LIPs act as barriers in ocean circulation as they can be several kilometers higher than the surrounding ocean floor and have contributed 95–100 m to global sea level variations since the Cretaceous [Miller et al., 2005; Müller et al., 2008b]. We account for the eruption of LIPs in our paleobathymetry by using the LIP outlines and eruption ages of Müller et al. [2008b] and the method of Schubert and Sandwell [1989] to determine average LIP height above the surrounding ocean floor. The computed average height for each LIP is then added to the oceanic basement grids allowing for seafloor subsidence since LIP eruption.

[11] Changes in sediment thickness through time have been shown to be a function of oceanic crustal age and latitude due to variations in productivity between zones of tropical upwelling and an increase in sediment thickness toward high latitudes, reflecting terrestrial runoff (see Davis and Elderfield [2004] for details). We estimate oceanic sediment thickness for the middle Miocene (Figure 4c) by

![Figure 4. Reconstruction at 15 Ma showing the three major steps used to create the middle Miocene paleobathymetry (a) oceanic age model of Müller et al. [2008b], (b) depth to oceanic basement with oceanic large igneous provinces included using the age to depth calculation [Stein and Stein, 1992], and (c) estimated oceanic sediment thickness (see text for details). Grey areas correspond to nonoceanic lithosphere.](image-url)
fitting a polynomial surface linear in age and quadratic in latitude (i.e., five model parameters) as explained by Müller et al. [2008b]. The isostatic compensation of the predicted sediment thickness is calculated using the function from Sykes [1996]. In the middle Miocene, we predict a mean sediment thickness on ocean crust of approximately 270 m with an estimated error of ±15 m [Müller et al., 2008b].

Figure 5. Uncertainty in Miocene bathymetry based on maximum age error reflecting the negative depth error (mean of −58 m). The positive depth error has the same spatial relationship but with a mean error of +66 m. The calculation of age uncertainties is detailed by Müller et al. [1997] and Müller et al. [2008b]. Highest errors correspond to areas of limited magnetic identification coverage (e.g., along the fast spreading East Pacific Rise, Central Atlantic, and several back-arc basins where magnetic identifications were not available). Areas of topographic uncertainty for the Tibetan Plateau shown by magenta polygon and Andean Cordillera shown by dark green and brown polygons; see Tables 1 and 2 for published error estimates.

2.3. Model-Required Adjustments

[14] Adjustments are made to ensure that our reconstruction can be utilized as input into GCMs (Figure 3). Marginal seas are either removed (e.g., the Amazon) or connected to the global ocean (e.g., the Caspian and Black Seas). Isolated ocean grid cells can act as sources or sinks of residual surface energy flux in GCMs, which subsequently contribute to net energy imbalance at the model surface. Connection of marginal seas to the global ocean also ensures fresh water balance is maintained within oceanic grid cells without the need of a flux correction.

[15] Transport of fresh water from the continents to the oceans is not explicitly considered in our paleotopography. Areas of internal drainage such as intermontane basins and flat plateaus allow rivers to converge over land grid cells instead of flowing to the ocean. While these features exist in the reconstructed paleotopography, river runoff directions are calculated for models capable of treating river transport as an independent boundary condition (e.g., Community Land Model 3 [Vertenstein et al., 2004]) and is available from the authors. River runoff directions are calculated based on the greatest slope between grid points. To avoid internal drainage, a boxcar filter with a width of 1200 km is applied to the paleotopography for these calculations, while the model input topography is left unfiltered. Although such a methodology is not suitable for many models, specifying river transport as an independent boundary condition allows topographic features to remain that would otherwise require smoothing or infilling.

[16] Seaways are widened to a minimum of two grid cells to ensure uninterrupted flow. This is required due to the staggering of variables in model grid space, where vector and scalar quantities are not located at the same point in a grid cell and result in oceanic grid cells adjacent to land having a zero velocity. For this purpose a grid cell size of 3.6° in longitude and 1.6° in latitude is assumed, approximately that of the coarse resolution Parallel...
Ocean Program version 2.0.1 (POP) [Smith and Gent, 2004]. For similar reasons, ocean depths are set to a minimum of three vertical levels (26 m, based on the POP). In some instances removal or combination of islands was necessary in widening seaways, particularly in South East Asia and North America (Figure 3). A significant adjustment is the closure of the narrow Tethys Seaway between Arabia and Africa. According to paleogeographical evidence [Roegl, 1999] initial closure of the Tethys seaway occurred during the Burdigalian, with intermittent connections during the middle Miocene and permanent closure by the late Miocene. As paleogeographic reconstructions represent a time average and adequate expansion of the seaway between Arabia and Africa would have been id estical at best, it was regarded as satisfactory to close off the seaway completely (Figure 3). It is noteworthy however that an open Tethys seaway may have played a role in maintaining a warm middle Miocene climate [e.g., Ramsay et al., 1998].

Further adjustments to bathymetry are required for implementation into ocean GCMs but are not made here. Such adjustments are model and resolution dependent and significantly affect the majority of the bathymetry (e.g., degrading bathymetry to a models vertical resolution). To avoid removal of a potentially significant amount of detail, such adjustments are left to the end-user.

3. Middle Miocene Paleogeography and Paleotopography

Following the rotation of continental plates to their middle Miocene positions (see section 2) modifications are applied to the paleogeography and paleotopography based on published geological data. Geological records are often both spatially and temporally limited. While a decrease in the time interval considered may increase the temporal precision of the data, this is often countered by a decrease in the density of available data points. In order to make our reconstruction as widely applicable as reasonable, quantitative paleoelevations from the Burdigalian to Langhian (approximately 20–14 Ma) are used to constrain the elevations of the Tibetan Plateau and Andean cordillera. These two mountain chains have particularly controversial uplift histories and a strong influence on climate [e.g., Gregory-Wodzicki, 2000; Harris, 2006]. Elevations from later periods of time which have implications for the early to middle Miocene are also included.

Table 1 lists published quantitative paleoelevations for the Tibetan Plateau. The majority of evidence supports a near modern elevation of the southern and central plateau by the early to middle Miocene [Coleman and Hodges, 1995; Currie et al., 2005; Spicer et al., 2003; Williams et al., 2001] or earlier [Rowley and Currie, 2006], with a minority maintaining that the main phase of uplift occurred during the late Miocene to Pliocene [Wang et al., 2006; Xu, 1981; Zhao and Morgan, 1985]. On the basis of a wider variety of published paleoaltimetry methods and results, a maximum elevation of 4700 m is applied to the southern and central plateau. Elevation of the northern plateau is not well constrained though speculations range from elevations of 3–4 km since the late Mesozoic [Murphy et al., 1997], to rapid uplift since the Pliocene [Harris, 1997], to rapid uplift since the Pliocene [Harris, 1997], and references therein]. We assume a relatively undeveloped northern plateau and reduce the northern extent of the whole plateau to reflect this. Elevation of the Indian plate prior to the India-Asia collision is also uncertain therefore a mean elevation of 100 m is applied to the area of the Indian plate that was subducted subsequent to 15 Ma (Figure 2).

Table 1. Tibetan Plateau Paleoelevations

<table>
<thead>
<tr>
<th>Location</th>
<th>Age (Ma)</th>
<th>Paleoelevation (m)</th>
<th>Error (m)</th>
<th>Latitude/Longitude</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dingqing Fm.</td>
<td>middle Miocene</td>
<td>4260</td>
<td>+475/-575</td>
<td>32°N/89.75°E</td>
<td>1</td>
</tr>
<tr>
<td>Niubao Fm.</td>
<td>middle Miocene</td>
<td>4850</td>
<td>+380/-460</td>
<td>32°N/89.75°E</td>
<td>1</td>
</tr>
<tr>
<td>Namling Basin</td>
<td>15</td>
<td>4689</td>
<td>±895</td>
<td>29.7°N/89.58°E</td>
<td>2</td>
</tr>
<tr>
<td>Namling Basin</td>
<td>15</td>
<td>4638</td>
<td>±847</td>
<td>29.7°N/89.58°E</td>
<td>2</td>
</tr>
<tr>
<td>Namling-Oiyug Basin</td>
<td>14–17</td>
<td>5200</td>
<td>+1370/-605</td>
<td>29.7°N/89.5°E</td>
<td>3</td>
</tr>
<tr>
<td>Gyirong Basin</td>
<td>after 7 Ma</td>
<td><2900–3400</td>
<td>N.D.</td>
<td>28.5°N/85.5°E</td>
<td>4</td>
</tr>
</tbody>
</table>

a References: 1, Rowley and Currie [2006]; 2, Spicer et al. [2003]; 3, Currie et al. [2005]; 4, Wang et al. [2006];

b N.D. is not determined.
Table 2. Andes Paleoelevations

<table>
<thead>
<tr>
<th>Location</th>
<th>Age (Ma)</th>
<th>Paleoelevation (m)</th>
<th>Error (m)</th>
<th>Latitude/Longitude</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Andes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potosi</td>
<td>13.8–20.8</td>
<td>2800</td>
<td>±2000</td>
<td>20°S/60°W</td>
<td>1</td>
</tr>
<tr>
<td>Atacama Desert</td>
<td>∼15</td>
<td>1000–4500</td>
<td>N.D.</td>
<td>24°S/69.5°W</td>
<td>2</td>
</tr>
<tr>
<td>Corocoro</td>
<td>middle Miocene</td>
<td>2000</td>
<td>±2000</td>
<td>17.5°S/68.7°W</td>
<td>3</td>
</tr>
<tr>
<td>Potosi</td>
<td>13.8–20.8</td>
<td>0–1320</td>
<td>±1200</td>
<td>20°S/60°W</td>
<td>4</td>
</tr>
<tr>
<td>Chucal</td>
<td>19–25</td>
<td>1000</td>
<td>±1500</td>
<td>18.8°S/69°W</td>
<td>5</td>
</tr>
<tr>
<td>Pislepampa</td>
<td>6–7</td>
<td>1200–1400</td>
<td>±1000</td>
<td>17.2°S/66°W</td>
<td>6</td>
</tr>
<tr>
<td>Northern Andes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sal. de Tequendama II</td>
<td>middle Miocene</td>
<td><700</td>
<td>±1500</td>
<td>6°N/74°W</td>
<td>7</td>
</tr>
<tr>
<td>Sal. de Tequendama I</td>
<td>early middle Miocene</td>
<td><700</td>
<td>±1500</td>
<td>6°N/74°W</td>
<td>7</td>
</tr>
<tr>
<td>Sal. de Tequendama</td>
<td>middle Miocene</td>
<td>0–500</td>
<td>±1500</td>
<td>6°N/74°W</td>
<td>8</td>
</tr>
</tbody>
</table>

b References: 1, Berry [1939]; 2, Alpers and Brinhall [1988]; 3, Singewald and Berry [1922]; 4, Gregory-Wodzicki et al. [1998]; 5, Munoz and Charrier [1996]; 6, Graham et al. [2001]; 7, Wijninga [1996]; 8, Van der Hammen et al. [1973].

c N.D. is not determined.

[20] Table 2 lists published quantitative paleoelevations for the Andes which were compiled and reviewed by Gregory-Wodzicki [2000], with an additional estimate from Graham et al. [2001]. Owing to the length of the cordillera and the north-south spread of data, southern, central, and northern sections are distinguished to encompass known elevations. Although no quantitative paleoelevations for the southern Andes were found, initiation of uplift in the southern Chilean Andes has been estimated to have occurred between 16 and 17.5 Ma [Flynn et al., 2002]. Malumian and Ramos [1984] also infer maximum uplift of the southern Andes between 10 and 12 Ma, suggesting relatively low elevations before this time. Work on the central Andes from the early 20th century by Berry [1939] and Singewald and Berry [1922], as well as later work by Alpers and Brinhall [1988] suggest relatively high elevations during the middle Miocene (from Gregory-Wodzicki [2000]). More recent work examining paleofloras and crustal shortening however suggests that at least half of the mean modern elevation, approximately 3700 m, was achieved after 11 Ma [Graham et al., 2001; Gregory-Wodzicki et al., 1998]. Referring to the published data, a mean elevation of 600 m, 1000 m, and 500 m is applied to the southern, central and northern Andes, respectively.

[21] Some additional geographic and topographic adjustments are applied to our reconstruction. The opening of the Bering Strait has been dated between 4.8 and 7.4 Ma [Marincovich and Gladenkov, 1999]. Sediments found in Arctic waters containing Pacific Ocean diatoms, support earlier, intermittent openings (see Sher [1999] for discussion), though there are no precise age data and it is not known to what extent (vertically or horizontally) the strait may have been open, if at all, during the middle Miocene. We therefore close the Bering Strait.

[22] The Zagros Mountains are removed, since collision between the Eurasian and Arabian plates occurred between 20 and 10 Ma [McQuarrie et al., 2003]. The opening of the Red Sea is related to the northward drift of the Arabian plate and occurred at approximately 25 Ma [McQuarrie et al., 2003]; however, its areal extent during the middle Miocene is not clear and most likely existed at a subgrid scale. We therefore exclude the Red Sea from our reconstruction.

[23] In accordance with other paleogeographic reconstructions (PALEOMAP Project) [Markwick, 2007] the Hudson Bay is removed. The North American Rocky Mountains are reduced to 75% of their modern elevation and East African topography is reduced to approximately 25% of its modern elevation [Ruddiman et al., 1997, and references therein].

[24] Global ice volume between 17 and 16 Ma is estimated between 25% and 70% of that of the present-day East Antarctic Ice Sheet [Pekar and DeConto, 2006]. Estimated Cenozoic surface profiles for Antarctica also imply a significantly reduced ice sheet during the early to middle Miocene [Robin, 1988]. Antarctic topography is reduced in our reconstruction by 1000 m; however, it is isostatically corrected by 718 m. While timing and extent of ice sheet formation on Greenland is
controversial [e.g., Eldrett et al., 2007; John and Krissek, 2002; Larsen, 1994] it is assumed here that the warm climate of the early to middle Miocene [Zachos et al., 2001] did not support significant ice sheets in the Northern Hemisphere. Greenland topography is therefore reduced by 2300 m and isostatically corrected by 1651 m.

Sea level was also adjusted to represent middle Miocene conditions. On the basis of Müller et al. [2008b], we apply a 50 m sea level rise relative to the present, midway between the estimates of Haq and Al-Qahtani [2005] and Miller et al. [2005]. Further sea level rise applied to our paleotopography results in widespread continental flooding, which is not supported by geological observations and which would lead to a greater number of model corrections while not adding significant detail.

4. Discussion and Conclusion

Our reconstructed tectonic boundary conditions are constrained by a combination of geological data, topographic and bathymetric assumptions, and general circulation modeling requirements. Uncertainties exist within these constraints and their climatic effect may be quantified in future climate sensitivity studies; however, we believe our reconstruction represents realistic middle Miocene surface conditions compliant with the requirements of GCMs.

The geography of the middle Miocene and present are remarkably similar (Figure 6) and it may be argued that the resolution at which most paleoclimate experiments are performed is currently too coarse to resolve the differences. However, as computing power and standard operating resolutions increase these potentially significant differences may be resolved and will provide further avenues for investigating middle Miocene climate. Changes in idealized ocean gateway configurations from the Miocene to present have already been shown to significantly affect ocean circulation [von der Heydt and Dijkstra, 2006], demonstrating that geographic changes, in addition to other reconstructed boundary conditions, will be required to successfully simulate middle Miocene climate.

Acknowledgments

Code by Samuel Levis and Christine Shields was used for the calculation of river transport directions. This work was carried out with funding from the Australian Research Council (ARC).

References

Sykes, T. J. S. (1996), A correction for sediment load upon the ocean floor; uniform versus varying sediment density estima-

Wijninga, V. M. (1996), *Paleobotany and Palynology of Neogene Sediments From the High Plain of Bogota (Colombia)*, 370 pp., Univ. of Amsterdam, Amsterdam.

