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ABSTRACT

We discuss the challenges in constructing and analyzing performance indicators for multi-objective simulation
optimization (MOSO), and we examine properties of several performance indicators for assessing algorithms
designed to solve MOSO problems to global optimality. Our main contribution lies in the definition and
analysis of a modified coverage error; the modification to the coverage error enables us to obtain an
upper bound that is the sum of deterministic and stochastic error terms. Then, we analyze each error
term separately to obtain an overall upper bound on the modified coverage error that is a function of the
dispersion of the visited points in the compact feasible set and the sampling error of the objective function
values at the visited points. The upper bound provides a foundation for future mathematical analyses that
characterize the rate of decay of the modified coverage error.

1 INTRODUCTION

Consider the context of evaluating one or more algorithms designed to solve the multi-objective simulation
optimization (MOSO) problem to global optimality by characterizing the entire efficient and Pareto sets.
That is, we wish to solve the MOSO problem

minimize { f (x) = ( f1(x), . . . , fd(x)) := (E[F1(x,ξ )], . . . ,E[Fd(x,ξ )])} s.t. x ∈ X, (1)

where f : D→Rd ,D⊆Rq,q ≥ 2 is a vector-valued function composed of d ≥ 2 unknown, real-valued,
continuous and conflicting objective functions fk : D→R,k = 1, . . . ,d. Each objective is formulated as the
expected value

fk(x) = E[Fk(x,ξ )] =
∫

Ξ

Fk(x,z)P(dz)

where Fk : D×Ξ → R, P is the probability measure induced by the random object ξ : Ω → Ξ, and
F : D×Ξ →Rd is the vector-valued function composed of F1, . . . ,Fd . We wish to solve (1) by characterizing
its global solution, called the efficient set E, and the efficient set’s image, the global Pareto set P, where

E := {x∗ ∈ X : ∄x ∈ X such that f (x)≤ f (x∗)}, P := { f (x∗) : x∗ ∈ E}

(see §2.1 for notation). We remark here that formulating the objectives using an expected value is extremely
general, in the sense that the objectives can be the expected value of some loss function of the performance
measure of interest. A famous example is the mean-variance portfolio optimization problem of Markowitz
(1952), in which the performance measure of interest is the (random) return of the portfolio over some time
horizon. The objectives are the expected return and variance of the return; thus, each objective is formulated
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as an expected value. MOSO problems of the form in (1) arise in many other real-world application areas;
see Hunter et al. (2019), Fu (2015).

Central to the task of evaluating MOSO algorithm performance is the fact that the objective function
values of (1) at each feasible point can only be observed with stochastic error, e.g. as the output of a Monte
Carlo simulation oracle. As in Ragavan et al. (2022), for each objective k = 1, . . . ,d, let ε j denote the
vector-valued error random field

ε j(·) := F(·,ξ j)− f (·) (2)

for independent and identically distributed (iid) random objects ξ j, j = 1, . . . ,n. The vector-valued objective
estimator is

F̄(·,n) := f (·)+n−1
∑

n
j=1 ε j(·),

where F̄(·,n) = (F̄1(·,n), . . . , F̄d(·,n)). We emphasize that vector-valued objective estimator is observed
point-wise; that is, we do not observe the entire field F̄(·,n) at once. Rather, at each visited point x ∈ X,
we must expend new effort to obtain nx observations from the stochastic oracle at x. Letting Xm ⊂ X be a
finite set of m feasible points visited by a MOSO algorithm, suppose that after expending a total simulation
effort N = ∑x∈Xm nx, the algorithm returns an estimated efficient set as

Êm(N) := {X∗ ∈ Xm : ∄X ∈ Xm such that F̄(X ,nX)≤ F̄(X∗,nX∗)}.

The estimated image of Êm(N) is the returned estimated Pareto set

P̂m(N) := {F̄(X∗,nX∗) ∈Rd : X∗ ∈ Êm(N)}.

Thus, the MOSO algorithm returns two random sets. This fact complicates assessment relative to the
single-objective simulation optimization context, in which the algorithm usually returns only a random
vector X∗ and its estimated image F̄1(X∗,nX∗).

There are at least three contexts in which we might like to assess the performance of one or more
MOSO algorithms designed to solve the problem defined above: (a) on a testbed problem for which the true
efficient and Pareto sets are known, in which case all algorithms can be evaluated separately with respect to
the known Pareto set, (b) on a testbed problem for which the true efficient and Pareto sets are unknown, in
which case we might evaluate algorithms’ returned solutions relative to each other, and (c) in a theoretical
context, where we assume knowledge of the true efficient and Pareto sets for the purposes of mathematical
analysis leading to efficient algorithmic design. In this paper, we consider contexts (a) and (c) exclusively;
that is, we assume the true efficient and Pareto sets are known in either a testbed or theoretical context.
We remark that context (b), in which we compare algorithms to each other on problems with unknown
efficient and Pareto sets, provides important motivation for the further development of confidence regions
on efficient and Pareto sets — an area that has seen little work to date; see Hunter and Pasupathy (2022),
Vogel (2017). (For recent advances in simulation optimization testbed problems, also see recent work on
the SimOpt library by Eckman et al. (2023a), Eckman et al. (2023b).)

1.1 Challenges in Constructing and Analyzing Performance Indicators for MOSO

In deterministic multi-objective optimization, performance indicators (Audet et al. 2021) measure the
performance of an algorithm by mapping the returned Pareto set approximation to a real number. Different
performance indicators capture different desirable characteristics for an algorithm’s returned solution, such as
convergence (how “close” it is to the true Pareto set), spread or coverage, and uniformity (Li and Yao 2019).
Each performance indicator has benefits and drawbacks; therefore, depending on the context, one or more
performance indicators may be appropriate. The literature on performance indicators is extensive: Reviews
including Li and Yao (2019), Audet et al. (2021), Faulkenberg and Wiecek (2010) collectively identify
over 100 different performance indicators for use when solving deterministic multi-objective optimization
problems.
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Figure 1: The figure shows the image space f (X) of a bi-objective convex quadratic problem (light gray
region) with true Pareto set P (black curve) and rectangular feasible set X⊂R2. The discretization Xm

consists of m = 25 points selected on a grid, and f (Xm) is represented by circular points (dark gray and
half gray, half black points). For one instance of additive, mean-zero normally distributed noise, the blue
stars indicate the estimated Pareto set P̂m(N) and the half gray, half black points represent f (Êm(N)). In
this case, f (Êm(N)) contains points that are dominated by other points in f (Êm(N)).

Far less work has been done on creating and determining the properties of performance indicators
specifically for MOSO (Hunter et al. 2019; Branke 2023), which is a newer field with unique challenges.
To explore these challenges in detail, recall that we are assessing MOSO algorithms in a context where we
can evaluate — either in truth or in theory — the objective functions both with and without error, as in
Figure 1. Consistent with the philosophies regarding assessment for simulation optimization algorithms
described in Pasupathy and Henderson (2006), we use the random set

f (Êm(N)) := { f (X∗) ∈Rd : X∗ ∈ Êm(N)}

as input to the performance indicator that measures how well the algorithm approximates the true Pareto
set, P. The set f (Êm(N)) contains the true objective function values of the estimated efficient set and is
usually unknown, except in this testbed problem or theoretical context. Specifically, f (Êm(N)) is always a
random set, in the sense that if we ran the MOSO algorithm again with a different starting seed ω ∈ Ω

for the simulation oracle (Law 2015), we would obtain a different value for f (Êm(N)) due to the random
object ξ , regardless of whether the algorithm is a randomized algorithm (Karp 1991). (For simplicity, we
assume the estimator Êm(N) is constructed as a finite set, without interpolation. We consider assessment of
interpolated or continuous estimators as future work.) With this example in mind, we consider two specific
challenges in constructing and determining the properties of performance indicators for a MOSO context:

C.1 A MOSO algorithm may return two points in Êm(N) whose estimated objective function values
belong to the estimated Pareto set P̂m(n), but where one point truly dominates the other; that is,
f (Êm(N)) may contain points that are dominated by other points in f (Êm(N)).

C.2 The set f (Êm(N)) is a random set, which implies that the performance indicator operating on this
set is also a random object.

As stated in C.1 and shown by the example in Figure 1, a MOSO algorithm can return two points
estimated as Pareto, but in which one point dominates the other. Since most deterministic multi-objective
optimization algorithms do not return dominated points (and if they do, the dominated points are usually
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straightforward to identify), performance indicators for the deterministic multi-objective optimization setting
typically do not account for this possibility. For example, the coverage error under the Lp-norm (Sayin
2000) for f (Êm(N)) is the random variable

distp(P, f (Êm(N))) = sup
y∗∈P

inf
f (X∗)∈ f (Êm(N))

∥y∗− f (X∗)∥p, (3)

where p = 1,2, . . . ,∞. The value of the coverage error is the same for an algorithm that returns only points
that do not dominate each other and an algorithm that returns the same set plus an arbitrary number of
“extra” dominated points. While coverage error is certainly informative in a MOSO context, it may need to
be considered alongside other performance indicators that account for the possibility of returning dominated
points. However, few such performance indicators exist.

Challenge C.2 states that f (Êm(N)) is a random set and the performance indicator is a random
object. Thus, regardless of which performance indicator we choose, we need to consider properties of
its distribution. When conducting numerical experiments on testbed problems, we should report several
quantiles of the random performance indicator across many independent algorithm runs. When performing
mathematical analysis on a performance indicator that assesses convergence properties, we may wish to
analyze a quantity such as the probability that performance indicator value exceeds a certain threshold.
For example, given a value a ∈ R, we may wish to determine the probability that the coverage error
exceeds a, P{distp(P, f (Êm(N)))> a} as a function of m and N. The difficulty of such analyses depends
on the properties of the chosen performance indicator. To the best of our knowledge, relevant properties of
performance indicators for MOSO remain mostly unexplored.

1.2 Summary of Contributions

We ultimately consider the properties of four performance indicators formulated for a MOSO context:
the Hausdorff distance (§3), the coverage error and modified coverage error (§4), and the hypervolume
difference (§5). Each performance indicator has benefits and drawbacks which we briefly discuss here,
along with our contributions.

Of the three performance indicators, only the Hausdorff distance addresses challenge C.1 by accounting
for the fact that f (Êm(N)) may contain points that dominate other points in f (Êm(N)). The Hausdorff
distance is also a metric, which enables the use of the triangle inequality to upper bound the Hausdorff
distance between P and f (Êm(N)) by a deterministic error term plus a stochastic error term, each of
which can be analyzed separately. Such an upper bound is a common tool for error analysis in stochastic
optimization algorithms (see, e.g., Yakowitz et al. (2000), Shapiro et al. (2009)). Here, the deterministic
error results from only considering a finite set of m points, while the stochastic error results from the fact
that the objective function values can only be estimated. However as discussed in §3, under the Hausdorff
distance, each of these error terms is itself difficult to analyze.

The coverage error, which is one of the two one-way distances whose maximum equals the Hausdorff
distance, is simpler to analyze. However, unfortunately, it is not a metric. Therefore, we cannot naïvely
invoke the triangle inequality to obtain an upper bound as the sum of the two types of error. Our main
contribution regards a modification to the coverage error that enables us to obtain such an upper bound.
Then, we analyze each error term separately to obtain an overall upper bound on the modified coverage error
that is the sum of an upper bound on the deterministic error term plus an upper bound on the stochastic
error term. The upper bound on the modified coverage error is stated in Theorem 1 and constitutes our
main contribution; it enables future mathematical analyses that address C.2, such as determining an upper
bound on the probability the modified coverage error exceeds some value a. Loosely speaking, the upper
bound is a function of the dispersion of the discretized feasible set under the Lr-norm in the decision space,

t := distr(X,Xm) = sup
x∈X

inf
x̃∈Xm

∥x− x̃∥r = sup
x∈X

min
1≤i≤m

∥x− x̃i∥r, (4)
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and the extent to which the true objective function values are well-approximated by the estimated objective
function values at each sampled point. (We use the Lr-norm in the decision space and the Lp-norm in the
objective space.) The dispersion is the smallest radius a such that for Xm = {x̃1, . . . , x̃m}, the union of the
q-balls, ∪m

i=1Br(x̃i,a), covers the compact feasible set X. For more details on dispersion and related results,
see Yakowitz et al. (2000), Niederreiter (1992).

Finally, we briefly consider the hypervolume difference in a MOSO context. While it does not address
C.1, this performance metric has many desirable qualities for deterministic multi-objective optimization and
has been the subject of considerable analysis in that context. For MOSO, we show that it is straightforward
to split this performance indicator into the sum of a deterministic term and a stochastic term; we leave
further analyses of each term to future work.

The remainder of the paper is organized as follows: §2 contains preliminaries including notation,
terminology, and assumptions. We discuss the three performance indicators in §3–§5, with the main theorem
appearing in §4. Concluding remarks appear in §6.

2 PRELIMINARIES

We discuss notation and terminology, including dominance concepts, in §2.1. Then, in §2.2, we discuss the
required assumptions that may be invoked in the remainder of the paper.

2.1 Notation and Terminology

The q-by-q identity matrix is Iq; the origin is 0q ∈Rq and 1q ∈Rq is a q-dimensional vector of ones. For
x = (x1, . . . ,xq) ∈Rq and 1 ≤ p < ∞, the Lp-norm is ∥x∥p := (|x1|p + |x2|p + . . .+ |xd |p)1/p, the L2-norm is
the Euclidean norm, and the L∞-norm is ∥x∥∞ := max{|x1|, |x2|, . . . , |xd |}. Note that for any r > p ≥ 1,

∥x∥r ≤ ∥x∥p ≤ q(1/p−1/r)∥x∥r. (5)

For x ∈Rq and 1 ≤ p ≤ ∞, let Bp(x, t) := {x′ ∈Rq : ∥x′−x∥p ≤ t}. Henceforth, we drop the p = 2 subscript
on all instances of the Euclidean norm.

Let A ⊆ Rq be a set. Its t-expansion is Bp(A, t) := ∪x∈ABp(x, t). Its complement is Ac, convex
hull is conv(A), boundary is bd(A), interior is int(A), and diameter is diam(A) = supx,y∈A∥x− y∥. A is
bounded if ∃c < ∞ such that ∀x,y ∈ A, ∥x− y∥ ≤ c. The sum of two sets A,B ⊆Rq is the Minkowski
sum, A+B := {a+b : a ∈A,b ∈B}. Let A⊂Rq,B⊂Rq be nonempty sets. For x ∈Rq, distp(x,B) :=
infy∈B ∥x− y∥p; distp(A,B) := supx∈A distp(x,B). The Hausdorff distance under the Lp-norm is Hp(A,B) :=
max{distp(A,B),distp(B,A)}.

For sequences of reals {an} and {bn}, an = O(1) if there exists c ∈ (0,∞) with |an|< c for large enough
n. For positive-valued sequences of reals {an} and {bn}, we say an = O(bn) if an/bn = O(1) as n → ∞.

Let f : D→ Rd ,D ⊆ Rq be a vector-valued function. For a set S ⊆D, f (S) := { f (x) : x ∈ S}. For
y, ỹ ∈Rd , y ≦ ỹ (y weakly dominates ỹ) if yk ≤ ỹk for all k = 1,2; y ≤ ỹ (y dominates ỹ) if y ≦ ỹ and y ̸= ỹ;
y < ỹ (y strictly dominates ỹ) if yk < ỹk for all k = 1,2. The set Rd

≧ denotes {y ∈Rd : 0 ≦ y}. See Hunter
et al. (2019), p. 7 for commentary on our conventions regarding the terms efficient and Pareto. We use
Pareto set instead of Pareto front for mathematical clarity.

2.2 Assumptions

In the results that follow, we invoke one or more of the assumptions presented in this section. Given that
our goal is to solve the MOSO problem to global optimality, the following Assumption 1 ensures that
relevant quantities, such as the feasible set, are properly bounded.
Assumption 1 The feasible set X⊆D⊆Rq, q ≥ 2 is compact, convex, and E⊂ int(X).
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On this bounded set, we further require Lipschitz continuity of the vector-valued random function
F(·,ξ ) for a.e. ξ ∈ Ξ. For generality, we allow different norms in the decision space and the objective
space.
Assumption 2 The vector-valued function F(·,ξ ) = (F1(·,ξ ), . . . ,Fd(·,ξ )) is L(ξ )-Lipschitz continuous
for a.e. ξ ∈ Ξ; that is, given p,r ∈ {1, . . . ,∞}, for all x1,x2 ∈D and a.e. ξ ∈ Ξ,

∥F(x1,ξ )−F(x2,ξ )∥p ≤ L(ξ )∥x1 − x2∥r

where 0 < E[L(ξ )2]< ∞ and ℓ := E[L(ξ )]> 0.
Assumption 2 implies that f and F̄(·,n) are also Lipschitz continuous, as stated in the following

Lemma 1.
Lemma 1 Under Assumption 2, letting L̄ := n−1

∑
n
i=1 L(ξi),

1. f is ℓ-Lipschitz continuous; that is, for all x1,x2 ∈D, ∥ f (x1)− f (x2)∥p ≤ ℓ∥x1 − x2∥r, and
2. F̄(·,n) is L̄-Lipschitz continuous a.s.; that is, for all x1,x2 ∈D, ∥F̄(x1,n)− F̄(x2,n)∥p ≤ L̄∥x1−x2∥r.

Proof. Hunter and Pasupathy (2022) contains a similar result and proof, which we extend here in a
straightforward fashion. Let x1,x2 ∈D. For Part 1, use Jensen’s inequality to see that

∥ f (x1)− f (x2)∥p = ∥E[F(x1,ξ )−F(x2,ξ )]∥p ≤ E[∥F(x1,ξ )−F(x2,ξ )∥p]≤ E[L(ξ )]∥x1 − x2∥r.

For Part 2, we have

∥F̄(x1,n)− F̄(x2,n)∥p ≤ n−1
∑

n
i=1∥F(x1,ξi)−F(x2,ξi)∥p ≤ (n−1

∑
n
i=1 L(ξi))∥x1 − x2∥r.

In addition to Assumption 2, for certain results, we also require the following Assumption 3. Assumption 3
implies that as the objective function values between two points become close on one objective, they must
become close on all objectives, regardless of whether the relevant decision variable values are close in the
decision space.
Assumption 3 There exists a positive constant c ∈ (0,∞) such that for all δ > 0 and all x1,x2 ∈ X, if
| fk(x1)− fk(x2)|< δ for at least one objective k ∈ {1, . . . ,d}, then ∥ f (x1)− f (x2)∥p < cδ .

Assumption 3 prevents “flat spots” in the objective space. More specifically, in some of the results that
follow, we consider the problem in (1) solved only on the discretized feasible set Xm. This assumption
prevents the existence of weakly Pareto points in the discretized problem, regardless of the choice of
Xm. Weakly Pareto points cannot be classified as Pareto or non-Pareto with a finite number of simulation
replications n because they have objective function values equal to those of Pareto points on at least one
objective. Thus, in MOSO, we have two choices for controlling the error with regards to weakly Pareto
points: assume there are no weakly Pareto points, or define the error such that we do not penalize an
algorithm for incorrectly classifying weakly Pareto points (also see the discussions in Hunter et al. (2019),
Applegate et al. (2020), Cooper et al. (2020)). Here, as in Applegate et al. (2020), we take the approach of
assuming the weakly Pareto points do not exist.

3 HAUSDORFF DISTANCE

We begin our discussion with the Hausdorff distance, which addresses the challenge in C.1 by penalizing
algorithms that return extra dominated points. In our context, the relevant Hausdorff distance is the random
variable

Hp(P, f (Êm(N))) = max
{

distp(P, f (Êm(N))), distp( f (Êm(N)),P)
}
. (6)

It can be considered a worst-case performance indicator, in the sense that the distance returned is the
maximum of the one-way distances between the Pareto set and the points in f (Êm(N)). The Hausdorff
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distance is a natural choice for analyzing the convergence and convergence rates of MOSO algorithms since
(a) it equals zero if and only if P and f (Êm(N)) have the same closure, (b) it does not require a reference
point or any parameters, and (c) it is a metric. The Hausdorff distance in (6) is useful for numerical analysis;
for example, Cooper et al. (2020) use sample quantiles of the Hausdorff distance to compare MOSO
algorithms throughout their numerical section.

For mathematical analysis, the fact that the Hausdorff distance is a metric implies that the triangle
inequality can be used to obtain an upper bound as the sum of a deterministic error term and a stochastic
error term. Henceforth, let

Em := {x̃∗ ∈ Xm : ∄ x̃ ∈ Xm such that f (x̃)≤ f (x̃∗)}, Pm := { f (x̃∗) : x∗ ∈ Em}

denote the respective global efficient and Pareto sets that result from solving (1) on only the discretized
feasible set Xm. Then a.s.,

Hp(P, f (Êm(N)))≤Hp(P,Pm)+Hp(Pm, f (Êm(N))) (7)

= max
{

distp(P,Pm), distp(Pm,P)
}︸ ︷︷ ︸

deterministic error

+max
{ > 0 ⇒ false exclusion︷ ︸︸ ︷

distp(Pm, f (Êm(N))),

> 0 ⇒ false inclusion︷ ︸︸ ︷
distp( f (Êm(N)),Pm)

}︸ ︷︷ ︸
stochastic error

,

where the terminology of false exclusion and false inclusion comes from the multi-objective ranking and
selection literature (Hunter and McClosky 2016; Hunter et al. 2019). However, (7) currently has limited
usefulness, since it is rather difficult to analyze. To the best of our knowledge, there is no known upper
bound on the right-hand side of (7).

Even for the deterministic error term Hp(P,Pm), we do not know of an upper bound except in the case
of a deterministic bi-objective convex quadratic program under the Euclidean norm. In this case, working
mostly in the decision space, Ondes and Hunter (2023) show that H(E,Em) = O(

√
t) and, subsequently, that

H(P,Pm) = O(
√

t). When the maximum condition number across both objectives is 1 so that the level sets
are hyper-spheres, they also show that H(E,Em)≤

√
tθ + t2 is a least upper bound, where θ := diam(E) is

the length of the efficient set. However, whether the corresponding O(
√

t) result in the objective space is
tight remains an open question.

4 COVERAGE ERROR AND MODIFIED COVERAGE ERROR

Given the difficulty in analyzing the Hausdorff distance, we next consider the coverage error, which is
one of the two distances whose maximum equals the Hausdorff distance in (6). Recall from (3) that the
coverage error is the random variable

distp(P, f (Êm(N))) = sup
y∗∈P

inf
f (X∗)∈ f (Êm(N))

∥y∗− f (X∗)∥p.

The coverage error measures the maximum distance from a point in P to its nearest representative in
f (Êm(N)). Notice that the coverage error would equal zero if P were a subset of the closure of f (Êm(N)).
Further, the one-way set distance used in the coverage error is not a metric, and in general, the triangle
inequality does not hold for one-way set distances.

Nevertheless, the coverage error is easier to handle than the Hausdorff distance, and we can modify it
to obtain a triangle-like inequality due to the special properties of the sets under consideration. Letting
Rd

≧ := {y ∈Rd : 0 ≦ y} be the nonnegative orthant and the sum of two sets be the Minkowski sum, define

P+ := P+Rd
≧, P+

m := Pm +Rd
≧, f (Êm(N))+ := f (Êm(N))+Rd

≧, f (Xm)
+ := f (Xm)+R

d
≧.
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These sets contain all points in P,Pm, f (Êm(N)), and f (Xm) respectively, along with all points in Rd that
they dominate. Now define the modified coverage error as the random variable

distp(P
+, f (Êm(N))+) = sup

y∈P+

inf
Y∈ f (Êm(N))+

∥y−Y∥p. (8)

We obtain the desired upper bound for the modified coverage error in the following proposition.
Proposition 1 The following inequality holds almost surely:

distp(P
+, f (Êm(N))+)≤ distp(P

+,P+
m)︸ ︷︷ ︸

deterministic term

+distp(P
+
m , f (Êm(N))+)︸ ︷︷ ︸

stochastic term

. (9)

Proof. The special structure of the sets P,Pm, and f (Êm(N)) implies f (Êm(N))+ ⊆ P+
m ⊆ P+. Therefore

a.s., we have distp( f (Êm(N))+,P+) = 0, distp( f (Êm(N))+,P+
m) = 0, and distp(P

+
m ,P

+) = 0. Then the
relevant one-way distances equal the Hausdorff distances such that a.s.,

distp(P
+, f (Êm(N))+) =Hp(P

+, f (Êm(N))+)≤Hp(P
+,P+

m)+Hp(P
+
m , f (Êm(N))+)

= distp(P
+,P+

m)+distp(P
+
m , f (Êm(N))+).

Next, we analyze each term in (9) separately, to determine how these terms change as a function of the
chosen discretization Xm and the amount of sampling N.

4.1 An Upper Bound on the Deterministic Term

In the following Lemma 2, we provide an upper bound on the deterministic error term in (9) that ultimately
yields distp(P

+,P+
m) = O(t), where t is the dispersion of the discretized feasible set Xm from equation (4).

Lemma 2 Under Assumptions 1 and 2, if the dispersion of the sampled points distr(X,Xm) equals t > 0,
then

distp(P
+,P+

m) = sup
y∈P+

inf
ỹ∈P+

m

∥y− ỹ∥p ≤ ℓtd1/p = O(t).

Proof. Since P+
m = f (Xm)

+, it is sufficient to show the upper bound for distp(P
+, f (Xm)

+). First, notice
that under Assumptions 1, 2 and by Lemma 1, for each y∗ ∈ P, there exists a point ỹ(y∗) ∈ f (Xm) such that
∥y∗− ỹ(y∗)∥p ≤ ℓt (see also Niederreiter 1992, Ch. 6). Then it follows that

distp(P, f (Xm)
+)≤ distp(P, f (Xm)) = sup

y∗∈P
inf

ỹ∈ f (Xm)
∥y∗− ỹ∥p ≤ sup

y∗∈P
∥y∗− ỹ(y∗)∥p ≤ ℓt. (10)

Now, it only remains to examine the relationship between distp(P, f (Xm)
+) and

distp(P
+, f (Xm)

+) = sup
y∈P+

inf
ỹ∈ f (Xm)+

∥y− ỹ∥p (11)

where it is straightforward to see that P⊂ P+ implies

distp(P, f (Xm)
+)≤ distp(P

+, f (Xm)
+). (12)

Let ysup ∈ P+∩Rd be a (possibly non-unique) finite-valued location of the supremum in the right side
of (11). If ysup ∈ P, then distp(P, f (Xm)

+) = distp(P
+, f (Xm)

+). Thus, henceforth, suppose ysup ∈ P+ \P.
Then there exists y∗sup ∈ P such that y∗sup ≤ ysup. Further, there exists a point in f (Xm)

+ nearest to y∗sup
which we denote as

ỹinf(y∗sup) = inf
ỹ∈ f (Xm)+

∥y∗sup − ỹ∥p,
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where ({ỹinf(y∗sup)}+Rd
≧)⊂ f (Xm)

+. Then it follows that under the p = ∞ norm,

dist∞(P+, f (Xm)
+) = dist∞({ysup}, f (Xm)

+)≤ dist∞
(
{y∗sup}+Rd

≧, {ỹinf(y∗sup)}+Rd
≧

)
= sup

z∈({y∗sup}+Rd
≧)

inf
z̃∈({ỹinf(y∗sup)}+Rd

≧)
max{|z1 − z̃1|, . . . , |zd − z̃d |}

≤ ∥y∗sup − ỹinf(y∗sup)∥∞ ≤ dist∞(P, f (Xm)
+).

Therefore, together with (12), concude dist∞(P+, f (Xm)
+) = dist∞(P, f (Xm)

+). Now, to obtain a result
under the p-norm, use (5) and (10) to obtain

distp(P
+, f (Xm)

+) = sup
y∈P+

inf
ỹ∈ f (Xm)+

∥y− ỹ∥p ≤ sup
y∈P+

inf
ỹ∈ f (Xm)+

d1/p ∥y− ỹ∥∞

= d1/p dist∞(P+, f (Xm)
+) = d1/p dist∞(P, f (Xm)

+)

≤ d1/p distp(P, f (Xm)
+)≤ d1/pℓt.

4.2 An Upper Bound on the Stochastic Term

Next, we turn our attention to determining an upper bound on the stochastic error term from (9). If this term
is nonzero, then a point that is truly Pareto under the discretization is falsely excluded from the estimated
Pareto set.
Lemma 3 Let δ > 0. Under Assumptions 2 and 3, if |F̄k(x̃i,nx̃i)− fk(x̃i)|< δ for all k = 1, . . . ,d and all
x̃i ∈ Xm, then

distp(P
+
m , f (Êm(N))+)≤ 2cδd1/p a.s.

Proof. First, we demonstrate that distp(Pm, f (Êm(N)))≤ 2cδ . Then, we use techniques similar to those
used in the proof of Lemma 2 to achieve the final result.

To show that distp(Pm, f (Êm(N)))≤ 2cδ , let the postulates hold. Then for all x̃i, the estimated objective
vector value F̄(x̃i,nx̃i) is inside a d-dimensional hypercube centered at f (x̃i) having edge length 2δ . For
x ∈ X, denote this d-dimensional hypercube as

∆d(x,δ ) := {y ∈Rd : |y− fk(x)|< δ for all k = 1, . . . ,d}.

Now, notice that if distp(Pm, f (Êm(N)))> 0, then Pm \ f (Êm(N)) ̸= /0. That is, a truly Pareto point (under
the discretization) must have been falsely excluded from the estimated Pareto set by some other point.
Let f (X̃∗

i ) ∈ Pm \ f (Êm(N)) be a truly Pareto point under the discretization whose objective function
value was excluded. Then there must exist another point f (X̃∗

j ) ∈ f (Êm(N)) such that X̃∗
j ∈ Êm(N) and

F̄(X̃∗
j ,nX̃∗

j
)≤ F̄(X̃∗

i ,nX̃∗
i
). Since F̄(X̃∗

j ,nX̃∗
j
)≤ F̄(X̃∗

i ,nX̃∗
i
) and F̄(X̃∗

i ,nX̃∗
i
) ∈ ∆d(X̃∗

i ,δ ), we have

F̄(X̃∗
j ,nX̃∗

j
)≤ f (X̃∗

i )+δ1d , (13)

where 1d denotes a d-dimensional vector of ones. Since f (X̃∗
i ) ∈ Pm implies f (X̃∗

j ) ̸≤ f (X̃∗
i ), there exists

at least one objective k′ such that
fk′(X̃∗

i )< fk′(X̃∗
j ). (14)

Noting that F̄(X̃∗
j ,nX̃∗

j
) ∈ ∆d(X̃∗

j ,δ ) and combining (13) with (14), it follows that

fk′(X̃∗
i )−δ < fk′(X̃∗

j )−δ ≤ F̄k′(X̃∗
j ,nX̃∗

j
)≤ fk′(X̃∗

i )+δ , (15)



Hunter and Ondes

which implies | fk′(X̃∗
i )− fk′(X̃∗

j )| ≤ 2δ . Under Assumption 3, we have ∥ f (X̃∗
i )− f (X̃∗

j )∥p < 2cδ . Thus,
distp( f (X̃∗

i ), f (Êm(N)))≤ 2cδ . Since f (X̃∗
i ) is an arbitrary point in Pm, then distp(Pm, f (Êm(N)))≤ 2cδ .

Now, since f (Êm(N))⊂ f (Êm(N))+, we have distp(Pm, f (Êm(N))+)≤ distp(Pm, f (Êm(N))). Follow a
process similar to that in the proof of Lemma 2 to see that

distp(Pm, f (Êm(N))+)≤ distp(P
+
m , f (Êm(N))+)

and dist∞(Pm, f (Êm(N))+) = dist∞(P+
m , f (Êm(N))+). Then, the result follows by applying (5).

4.3 An Upper Bound on the Modified Coverage Error

Combining the inequality in (9) with the upper bounds from Lemmas 2 and 3, we have the following
Theorem 1.
Theorem 1 Let δ > 0 and Assumptions 1, 2, and 3 hold. If the dispersion of the sampled points distr(X,Xm)
equals t > 0 and |F̄k(x̃i,n)− fk(x̃i)|< δ for all k = 1, . . . ,d and all x̃i ∈ Xm, then an upper bound on the
modified coverage error is

distp(P
+, f (Êm(N))+)≤ (ℓt +2cδ )d1/p a.s.

Further analyses regarding the rate of decay of the modified coverage error can now be conducted using
properties of the chosen set Xm and properties of the underlying probability space; see, e.g., Vershynin
(2018). We leave these analyses to future work.

5 HYPERVOLUME DIFFERENCE

Due to their desirable mathematical properties, the hypervolume-related performance indicators are arguably
amongst the most popular and well-studied in the deterministic multiobjective optimization community
(Audet et al. 2021). Inspired by Branke et al. (2016) and as discussed in Hunter et al. (2019), we consider
the hypervolume difference, defined as follows.

First, let the hypervolume of a set A⊂Rd with respect to a reference point z be the Lebesgue measure
of the set of points that A dominates and that dominate z; that is,

HV(A,z) := λ

(
∪a∈A{y ∈Rd : a ≤ y ≤ z}

)
,

where λ denotes the Lebesgue measure. The hypervolume difference between the Pareto set and the true
objective values of the estimated efficient set equals the random variable

HVD(P, f (Êm(N)),z) :=HV(P,z)−HV( f (Êm(N)),z). (16)

This result follows from the more general definition of the hypervolume difference between two sets (see
Branke et al. 2016; Hunter et al. 2019) because for every point in f (Êm(N)), there exists a point in P that
weakly dominates it. For test problems in which the Pareto set is known and the true objective function
values can be evaluated exactly, computing the hypervolume difference in (16) can be accomplished by one
of the many algorithms detailed in Guerreiro et al. (2021). Note that HVD is sensitive to the choice of
reference point. The nadir or its approximation is a natural choice (Ehrgott and Tenfelde-Podehl 2003;
Kirlik and Sayin 2013; Audet et al. 2021), but there is no consensus on the best choice (Li and Yao 2019).

For mathematical analysis, it is straightforward to split the quantity in (16) into the sum of deterministic
and stochastic error terms,

HVD(P, f (Êm(N)),z) = (HV(P,z)−HV(Pm,z))︸ ︷︷ ︸
deterministic term

+
(
HV(Pm,z)−HV( f (Êm(N)),z)

)
︸ ︷︷ ︸

stochastic term

.
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Splitting the analyses in this fashion may enable the use of hypervolume indicator results from the
deterministic multi-objective optimization literature; see, for example, Marescaux and Hansen (2021) and
the discussion in Shang et al. (2021). We leave specific bounds on the hypervolume difference to future
work.

6 CONCLUDING REMARKS

We discuss several challenges facing the evaluation and assessment of algorithms designed to solve the
MOSO problem to global optimality, and we discuss the properties of several performance measures relative
to these challenges. We provide a modification to the coverage error that allows us to derive an upper
bound enabling future mathematical analysis for this performance indicator. To the best of our knowledge,
this result constitutes the first time such analytical upper bounds on a MOSO performance indicator have
appeared in the literature.
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