Capacity planning through queueing analysis and simulation-based statistical methods: a case study for semiconductor wafer fabs

Jingang Liu
Feng Yang*
Hong Wan
John W. Fowler

June 15, 2010

Abstract

This paper presents a comprehensive framework for strategic capacity expansion of production equipment in semiconductor manufacturing, and the proposed approach is applied on a model of an actual wafer fabrication facility. It is the intention of this work to show that, once intelligently integrated, an analytical queueing model and a numeric computer simulation model can be used synergistically and can lead to a better alternative method than methods restricted to only one of them. The outcome of our methods is a number of good system configurations, each one of which is characterized by its cycle time(CT)-throughput(TH) profile. Such profiles fully describe the system’s comprehensive performance over a wide range of demand scenarios (involving varying product mix), and hence can be used to thoroughly evaluate alternative configurations in capacity expansion decisions.

1 Introduction

With the cost of new wafer fabrication (fab) facilities now well in excess of 3.5 billion U.S. dollars, capacity planning decisions are more important than ever to the success of semiconductor firms (Chen and Chen 2009). The initial investment for building a wafer fab and installing the initial equipment is close to a few billion dollars, and in addition, every year tool and equipment procurement could cost tens of millions of dollars per facility. This paper is concerned with capacity expansion decisions which intend to make the best use of a given budget to satisfy customer demand in the future.
Capacity planning for wafer fabs is difficult mainly due to the volatility of customer demand and the complexity/variability inherent in the fab systems (e.g., complex product flows, diverse equipment characteristics, downtimes, etc.). A recent work by Geng and Jiang (2009) provides a thorough review of the current research methods in capacity planning, and here, we briefly discuss these existing methods. In industry, the most widely used approach involves spreadsheet models (Ozturk et al. 2003), which are deterministic and cannot accommodate the stochastic behavior of wafer fabs. In the literature and practice of some industries (particularly the semiconductor industry), both analytical queueing (e.g., Silva and Morabito 2009) and computer simulation (e.g., Ayag 2007, Kumar and Nottestad 2009) models have been used individually to address the capacity expansion problems for stochastic manufacturing systems (Neacy et al. 1994). The use of queueing and simulation models in capacity planning is usually coupled with optimization schemes: the queueing or simulation models are used to evaluate the performance of a given system configuration, while the optimization procedure iterates in search of a best configuration (e.g., Bard et al. 1999, Hopp et al. 2002). There are two major drawbacks with such hybrid methods. The first is associated with the performance evaluation models: queueing models are generally criticized for inaccuracy and simulation is known for its high computational cost. The second drawback lies in the use of optimization methods: An objective function and a number of constraints must be formulated mathematically. This hinders the ability to evaluate the system performance over a wide range of future scenarios; and the majority of the work in the literature only considers a single (e.g., Hopp et al. 2002) or a set of (e.g., Swaminathan 2000) discrete demand scenarios. Further, mathematical optimization methods make it difficult to address trade-offs that are not easily quantified (Nelson 2004). The solution resulting from the optimization-based hybrid method, if not impractical, may be far from sufficient to provide an adequate alternative pool for decision makers, who generally have to consider factors beyond numbers.

To overcome the drawbacks of existing capacity expansion methods, we propose in this paper a comprehensive framework, which integrates queueing models and simulation-based statistical methods. Our approach is distinct in the following aspects:

- A desired number of promising configurations (scenarios) can be generated with each one fully characterized by its cycle time (CT)-throughput (TH) performance profile. These profiles will allow us to evaluate the comprehensive performance of each expansion alternative over a wide demand (or TH) range, which enables risk analysis of investment decisions.
The availability of a set of good configurations (rather than a single good configuration) will certainly provide much more latitude in decision making.

- The strengths of queueing and simulation models are fused for the efficient generation and characterization of the desired alternatives. Statistical methods such as ranking and selection (Chapter 17, Henderson and Nelson 2006) and metamodeling (Chapter 18, Henderson and Nelson 2006) are adopted to ensure the computational efficiency and statistical validity of simulation experiments.

It is also worth mentioning that in the review of capacity planning by Geng and Jiang (2009), it was pointed out that new methods are yet to be developed that can (i) accommodate the uncertainty in product demand (including the uncertainty in product mix) and (ii) take the CT performance measure into consideration. This paper attempts to develop a capacity planning approach which addresses these two issues in a better way than those in the literature.

In this case study, we apply the proposed methods on a model of a real wafer fab for capacity expansion decisions. The remainder of the paper is organized as follows. Section 2 provides an overview of the research problem and the proposed framework to address it. Section 3 describes the simulation model of the wafer fab used to perform this case study. In Section 4, the proposed methods are applied on the wafer fab model and the results of the capacity expansion analysis are presented. The computational and statistical tools developed in this case study are briefly described in Section 5. Section 6 gives a brief summary and discusses future work.

2 Overview of the Problem and Method Framework

We focus our attention on the quarterly/yearly capacity expansion problem. Our interaction with industry indicates that a medium sized wafer fab could spend tens of millions of dollars every quarter on procurement of new tools. The question is how to allocate the total budget to purchase tools/equipment so that the system’s performance improvement will be maximized.

For wafer fabs, among the most important performance metrics are throughput (TH), manufacturing cycle time (CT), and work in process inventory (WIP). TH is defined as the rate at which jobs are processed by the system, CT refers to the random variable representing the time it takes a job to traverse the system, and WIP represents the average number of jobs present in the system (Hopp 2007). Since computing mean CT and WIP is equivalent (Little’s Law can be used to compute from one to the other), here we consider TH and mean CT as the two metrics
of primary interest. For the ease of discussion, we will use CT to refer to mean CT in the rest of the paper except in the last section, Section 6.

In semiconductor manufacturing, it is desirable to (i) match the system TH with the customer demand rate for various types of products, and at the same time, and (ii) to minimize the CT. However, these two are considered as conflicting goals: for a given system, as we increase the TH to satisfy a higher demand, the CT will also increase, following a nonlinear path. Figure 1 gives an example of CT-TH profiles for single-product systems. Each curve describes the trade-off performance of a different system configuration with the upper limit of the TH being the capacity of that system (marked by the dashed line in Figure 1). See Fowler et al. (2001) and Yang et al. (2007, 2008) for details of CT-TH curve generation. For discussions of selecting the best system configuration among different scenarios based on their CT-TH curves, please refer to Spence and Welter (1987). In this work, a multi-product manufacturing environment is investigated, and characterized by a multi-dimensional CT-TH profile, for which:

- TH represents the vector of throughput for multiple products, with each element being the throughput for a certain type of product, and

- CT includes the expected cycle time of each of the multiple types of products.

![Figure 1: CT-TH profiles for two different system configurations in a single-product environment.](image)

For this long-term strategic planning, we consider the manufacturing system as a push system (Hopp 2007), for which production managers can control the TH (TH has to be less than the
capacity for the stability of the system) by controlling the release rate of jobs into the system. Each TH corresponds to an expected cycle time for products. The trade-off relationship between CT and TH has long been recognized to provide a comprehensive performance profile for a manufacturing system (Atherton and Dayhoff 1986, Hopp and Spearman 2008). With such profiles, the system’s overall performance (e.g., the total profit in the next six months), which mainly depends on the TH, CT and WIP, can be evaluated over a range of demand patterns and hence allow for the risk analysis of various investment options.

Ideally, a CT-TH profile is desirable for each feasible system alternative so that a thorough comparison can be performed across all the expansion options. However, the number of feasible alternatives may be extremely large (as shown in Section 4.1), which makes it practically impossible to generate a CT-TH profile for each alternative. In light of this, we propose a three-stage framework to address the capacity expansion problem. The analysis in the first two stages is mainly to obtain a candidate pool containing a reasonable number of good system alternatives, and this pool should be the largest possible that we can afford to explore further in Stage 3, constrained by the time available to make a decision. In Stage 3, the systems resulting from Stages 1 and 2 will be characterized by their CT-TH profiles. More specifically, the three-stage approach is outlined as follows.

Stage 1. Given the budget, generate a large number of alternatives for the expanded facility (Section 4.1).

The queueing network models developed in Hopp et al. (2002) will be used to perform the capacity analysis and to facilitate this alternative generation. For real semiconductor fabrication systems (that involve batches, re-entrants, setups, and multi-product classes), this model is able to (i) exactly calculate the capacity of each workstation in the system, and (ii) identify the bottleneck station(s).

Stage 2. Screen the large number of alternatives down to a relatively small number of promising configurations (Section 4.2).

Analytical queueing models (for capacity analysis) and/or computer simulation will be used to perform this alternative screening. The adopted queueing model by Hopp et al. (2002) has already been briefly introduced in Stage 1 above, and simulation-based screening will be performed following the procedure proposed by Koenig and Law (1985). Koenig and Law’s procedure is one of the ranking and selection procedures (Chapter 17, Henderson...
and Nelson 2006), and is designed to select among a number of alternatives a subset of size ℓ that contains the m best candidates ($1 \leq m \leq \ell$). The essence of such a procedure lies in the control of the probability of correct selection and the achievement of simulation efficiency.

Stage 3. For each selected alternative from Stage 2, CT-TH profiles will be generated through simulation experiments using the statistical procedures developed in Yang (2010) (Section 4.3).

To generate the CT-TH profiles, Yang (2010) developed a neural network based metamodeling approach. A metamodel, which takes the form of polynomial regressions, splines, etc., is a mathematical approximation of the quantitative relationship implied by the simulation. Metamodeling techniques refer to the integration of computer simulation and response surface modeling (Chapter 18, Henderson and Nelson 2006). In Yang (2010), to metamodel the CT-TH surfaces, (TH, CT) data pairs will first be collected by performing a selected set of simulation experiments; from the data, statistical methods will be used to fit a neural network model (metamodel) which provides a functional approximation for the CT-TH relationship.

Here, a metamodeling approach is adopted for CT-TH modeling because neither analytical queueing models nor pure simulation are able to provide an adequate characterization. Queueing models, though fast and easy to use, rely on restrictive assumptions and are often not able to accurately capture the CT-TH relationship for real complex systems, particularly when multiple resources are required for processing (e.g. a machine and an operator) or when non-FCFS dispatching policies are employed. Discrete-event simulation, on the other hand, is known for its high fidelity and flexibility, but may be very time-consuming to run: models of complex manufacturing systems may take several hours for a single replication (Fowler and Rose 2004). Metamodeling aims at overcoming the major drawbacks of queueing methods and computer simulation, and is able to generate metamodels representing the CT-TH relationships for a given system. Such models are mathematical functions like those provided by a tractable queueing model while possessing the high fidelity of simulation.

In this paper, the proposed framework is applied on a model of a real wafer fab, which is described in Section 3. The detailed methods and results are given in Section 4.
3 Simulation Model

We constructed the simulation model in Microsoft Visual Studio C++ that represents the semiconductor wafer fab dataset 1 provided by the SEMATECH testbed at Arizona State University (http://www.eas.asu.edu/ masmlab). Those datasets were developed in the early 1990s by a group of researchers at SEMATECH to provide the public with models of real wafer fabs that can be used for testing new simulation packages, novel heuristics and factory control policies, and other newly developed approaches to wafer fab/equipment scheduling (Mason and Fowler 2000). In this work, dataset 1 was selected because out of the seven SEMATECH datasets available, it is the only one with equipment cost data, which is required in our capacity planning (The costs of the equipment have been adjusted to be more consistent with their current values.)

3.1 Workstations and Operators

A workstation refers to a group of functionally identical machines that perform the same operations. Dataset 1 consists of a total of 83 workstations, and each station consists of one to eighteen identical machines. The times between machine failures and the times to repair follow exponential distributions. The same dispatching rule, first come first serve (FCFS), is applied to all the workstations. We note that if other dispatching rules were used here, our procedures would not change.

In this simulation model, there are 31 operator groups who are responsible for loading, unloading and machine operating. Each operator group has a number of operators who work only on specified workstations. Workers within each group are assumed to have the same level of working skills. Operators prioritize their tasks based on the FCFS rule.

3.2 Product Flow

Dataset 1 is composed of two different product flows that use the 83 different tool groups (workstations) mentioned above. Product 1 has 210 processing steps with a pure processing time of 293 hours, while Product 2's process routing contains 245 steps with a pure processing time of 336 hours. Both products are released into the fab in a fixed lot size of 48. As mentioned earlier, the system is treated as a push system, and thus the release rate of jobs (e.g., the weekly wafer starts) is controlled and specified in the simulation experiments.
3.3 Model Verification and Validation

We converted the SEMATECH dataset into a simulation model coded in Microsoft Visual Studio C++. The C++ model was verified using techniques recommended in Law and Kelton (2000), such as running the model with simplified assumptions to detect logical mistakes and testing the model outputs under a variety of input settings. Also, the C++ model was validated against the SEMATECH dataset executed in Factory Explorer (http://www.wwk.com), which is a simulation software in an Excel spreadsheet environment. The outputs from the C++ and Factory Explorer models are compared for a wide set of inputs.

The reason why we converted the dataset into C++ is so that the simulation model can be integrated as a sampling tool into the adopted statistical procedures (Sections 4.2.2 and 4.3). As will be explained in Section 5, the software we have developed for this case study is able to automatically iterate between the running of simulation for data collection, the statistical data analysis, and experimental design of future simulation experiments.

4 Decision-Making Methods for Capacity Expansion

In this section, we present in detail the proposed capacity planning method, and apply it on the wafer fab model described in Section 3. For the reader’s convenience, we first define the following notations.

- \(b \): The total budget available for capacity expansion.
- \(K \): Number of different types of products/wafers in a semiconductor fabrication system.
- \(d = (d_1, d_2, \ldots, d_K) \): the demand rate vector with each element representing the demand per week for a product type.
- \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_K) \): the product mix (PM) vector with each element \(\alpha_k \) representing the fraction of type \(k \) product in the product flow.
- \(d = \sum_{k=1}^{K} d_k \): the overall release rate (throughput) of all products.
- \(J \): Total number of workstations in a system.
- \(\Pi \): The symbol used to represent a system configuration; \(\Pi_0 \) denotes the base system, and \(\Pi_i \) \((i = 1, 2, 3, \ldots)\) an alternative system configuration.
\(\mu_j(\Pi, \alpha) \): The capacity of station \(j \) (\(j = 1, 2, \ldots, J \)) in the system \(\Pi \) with a PM of \(\alpha \).

\(\rho_j(\Pi, \mathbf{d}) \): The utilization of station \(j \) (\(j = 1, 2, \ldots, J \)) in the system \(\Pi \) with a product flow specified as \(\mathbf{d} \).

\(j_{BN} \): The BN station that achieves \(\max \{ \rho_j(\Pi, \mathbf{d}), j = 1, 2, \ldots, J \} \), the highest station utilization.

\(\mu(\Pi, \alpha) \): The system capacity for \(\Pi \), which is equal to the capacity of the BN station \(\mu_{j_{BN}}(\Pi, \alpha) \).

\(I \): The number of important stations identified by the analytical queueing analysis.

\(c_k(\Pi, \mathbf{d}) \): The expected cycle time of product \(k \) in system \(\Pi \) when the product flow is given as \(\mathbf{d} = (d_1, d_2, \ldots, d_K) \).

\(x \): The system utilization, i.e., the utilization of the bottleneck station.

Suppose that the system processes \(K \) different types of products (wafers), and \(\mathbf{d} = (d_1, d_2, \ldots, d_K) \) denotes the future demand rate vector with each element representing the demand per week for a product type. At the stage of planning capacity, \(\mathbf{d} \) is forecasted and could potentially vary over a certain range. The impact of the demand \(\mathbf{d} \) upon the total profit of running a semiconductor facility is illustrated in Bermon and Hood (1999). Thus, it is of interest to evaluate different system configurations over a range of demand, which is equivalent to the target throughput that the system will be running at to satisfy customers’ need. Hence, we will also refer to \(\mathbf{d} \) as the system TH. Alternatively, the TH (or demand vector) \(\mathbf{d} \) can be expressed as \(d \cdot \alpha \), with \(d = \sum_{k=1}^{K} d_k \) being the overall throughput of all the products, and \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_K) \) the PM vector where each element \(\alpha_k \) represents the fraction of type \(k \) product in the system’s product flow. Obviously, the PM satisfies the following condition:

\[
\sum_{k=1}^{K} \alpha_k = 1; \quad \alpha_k \geq 0 \text{ for } k = 1, 2, \ldots, K
\]

Assuming steady-state, the TH is equal to the release rate of products into the system and can be controlled in production. Let \(\Pi_0 \) be the current/base system consisting of \(J \) workstations, and \(\Pi_i \) (\(i = 1, 2, 3, \ldots \)) an alternative system that is reconfigured from \(\Pi_0 \) using the given budget, \(b \).

Figure 2 illustrates the framework of our three-stage capacity expansion methods, which has been briefly discussed in Section 2. The output of the proposed procedure is a number of good
expansion alternatives, and each one of them is fully characterized by its CT-TH performance profile. The inputs of the procedure include the current configuration Π_0 of the system being investigated, the total budget, and the most likely demand forecast d^*, which is assumed available from expert opinion (Swaminathan 2000). In our work, the analysis in the first two stages is driven by the most likely demand. If necessary, a discrete set of demand scenarios (when available) can replace the single demand d^* in Stages 1 and 2, and the corresponding extension is straightforward, as will become clear later (in Sections 4.1 and 4.2). The aim of the first two stages is to obtain a candidate pool including good alternatives. The size of the pool is selected in such a way that all the systems in it can be characterized by their CT-TH profiles (Stage 3) within the time available for making the expansion decision. As explained earlier, such CT-TH profiles capture the system performance over a fairly wide range of TH (or demand). In the procedure, both queueing models and simulation-based methods are adopted. Queueing models are used to perform capacity/utilization analysis, which is highly accurate or even exact for that purpose, whereas the CT related performance profiles are estimated via simulation experiments,
which are designed and analyzed by statistical methods.

For this case study, the inputs of the procedure are set as follows. The SEMATECH wafer fab described in Section 3 is being considered for capacity expansion. Three different budget levels, $b = 15, 30, 45$ million dollars, have been used in our experiments, and due to space constraints, here we only present the details for the case with a budget of $b = 30$ million dollars. In the wafer fab of interest, there are $K = 2$ different types of product flows, and thus both α and d are two-dimensional vectors. The most likely demand d^* is set as $(49, 49)$ lots/week, or equivalently, $d^* = d^*\alpha^* \approx 98(0.5, 0.5)$.

4.1 Potential Capacity Expansion Scenarios

In this part, a large number of feasible alternatives that satisfy the budget constraint will be generated with the assistance of analytical queueing models. A lot of work has been devoted to developing queueing approximations to model the behavior of manufacturing systems, and Shantikumar et al. (2007) provides a recent review, which includes Whitt (1983), Bitran and Tirupati (1988), Chen et al. (1988), Mitrani and Puhalskii (1993), Connors et al. (1996), Morrison and Martin (2007), etc. In our work, the open queueing network model developed in Hopp et al. (2002) is used to perform the capacity analysis for wafer fab systems.

Hopp’s model incorporates features common to semiconductor environment, such as batch processes, re-entrant flows, multi-product classes, and machine setups, but does not include operators; and it provides an exact calculation of the station capacity, which is denoted by $\mu_j(\Pi, \alpha)$, $j = 1, 2, \ldots, J$, a function of the system configuration and product mix (Bermon and Hood 1999). Given Π and α, the effective process time at each workstation can be computed taking into account machine failures and repairs, setups, batches, and re-entrants; and $\mu_j(\Pi, \alpha)$ ($j = 1, 2, \ldots, J$), the maximum process rate (in terms of, say, lots/week) at station j, is equal to the inverse of the effective process time at that station (Hopp et al. 2002). For a given product flow specified by $d = d\alpha$, the utilization $\rho_j(\Pi, d)$ can also be obtained for station j and is required to satisfy $0 < \rho_j(\Pi, d) < 1$ to ensure the stability of the system. The bottleneck (BN) station j_{BN} is the station that achieves $\max\{\rho_j(\Pi, d), j = 1, 2, \ldots, J\}$, the highest station utilization; and there could be multiple BN stations. The system capacity $\mu(\Pi, \alpha)$ is equal to the capacity of the BN station $\mu_{j_{BN}}(\Pi, \alpha)$.

This exact capacity analysis provided by Hopp’s queueing model is used to assist the generation of the large number of potential system alternatives. As mentioned earlier, in the alternative
Table 1: The most heavily utilized stations in the base system Π₀ at the most likely forecasted demand \(d^\ast\).

<table>
<thead>
<tr>
<th>Station</th>
<th>Num of Machines</th>
<th>Unit cost ($)</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_SINK</td>
<td>3</td>
<td>3,000,000</td>
<td>1.15</td>
</tr>
<tr>
<td>MATRIX</td>
<td>7</td>
<td>3,000,000</td>
<td>1.1</td>
</tr>
<tr>
<td>LEITZ</td>
<td>8</td>
<td>1,000,000</td>
<td>1.03</td>
</tr>
<tr>
<td>CRIT_DEV</td>
<td>12</td>
<td>3,750,000</td>
<td>0.85</td>
</tr>
<tr>
<td>DIFF_SINK2</td>
<td>1</td>
<td>3,000,000</td>
<td>0.82</td>
</tr>
<tr>
<td>NONCRIT_DEV</td>
<td>9</td>
<td>2,000,000</td>
<td>0.81</td>
</tr>
<tr>
<td>UV_BAKE</td>
<td>2</td>
<td>750,000</td>
<td>0.8</td>
</tr>
<tr>
<td>PEAK</td>
<td>2</td>
<td>4,000,000</td>
<td>0.79</td>
</tr>
<tr>
<td>STEPPER</td>
<td>11</td>
<td>15,000,000</td>
<td>0.75</td>
</tr>
<tr>
<td>HIGH_CURR_IMP</td>
<td>4</td>
<td>15,000,000</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>Num of Machines</th>
<th>Unit cost ($)</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIGNER</td>
<td>6</td>
<td>8,000,000</td>
<td>0.7</td>
</tr>
<tr>
<td>DRIVE_OX</td>
<td>2</td>
<td>4,000,000</td>
<td>0.7</td>
</tr>
<tr>
<td>AME_8310</td>
<td>2</td>
<td>15,000,000</td>
<td>0.69</td>
</tr>
<tr>
<td>VWR_OVEN</td>
<td>2</td>
<td>500,000</td>
<td>0.65</td>
</tr>
<tr>
<td>INTERGATE</td>
<td>3</td>
<td>4,000,000</td>
<td>0.65</td>
</tr>
<tr>
<td>REFLOW</td>
<td>4</td>
<td>4,000,000</td>
<td>0.64</td>
</tr>
<tr>
<td>CRIT_COAT</td>
<td>12</td>
<td>3,750,000</td>
<td>0.64</td>
</tr>
<tr>
<td>NONCRIT_COAT</td>
<td>9</td>
<td>2,000,000</td>
<td>0.62</td>
</tr>
<tr>
<td>QUAESTAR</td>
<td>1</td>
<td>10,000,000</td>
<td>0.61</td>
</tr>
</tbody>
</table>

generation (Section 4.1) and screening (Section 4.2), we assume that a most likely demand forecast \(d^\ast(\alpha_1^\ast, \alpha_2^\ast) = 98(0.5, 0.5)\) is available. Suppose that the given budget is \(b = 30\) million dollars, we proceed in the following two steps to generate system alternatives.

First, among the total of \(J = 83\) workstations in wafer fab, a number of most heavily utilized stations were identified as important stations considered for capacity expansion. Given the most likely forecasted demand \(d^\ast \alpha^\ast = 98(0.5, 0.5)\), the station utilizations \(\{\rho_j(\Pi_0, d^\ast), j = 1, 2, \ldots, J\}\) were computed for the base system, and the \(I = 19\) most heavily utilized stations (with a utilization above the threshold \(\rho_L = 0.6\)) were selected as in Table 1. Apparently, the base system is not able to satisfy the future demand, since the most heavily-loaded station has a utilization of \(1.15 > 1\), which means that the system will not operate in stability if its product release rate is pushed up to match the desired demand. These \(I = 19\) stations will be considered important and as candidates for investment, and their unit cost is obtained by multiplying by 50 the original cost in the early 1990s given in the SEMATECH dataset. The multiplier of 50 was chosen in order to make the cost of the equipment somewhat close to the cost of today’s equipment.

Second, feasible alternatives will be generated allocating the budget \(b = 30\) million dollars to the nineteen important stations. Suppose that the \(I = 19\) important stations are numbered from 1 to 19. An alternative system configuration \(\Pi\) can be specified as \(\{x(j), j = 1, 2, \ldots, I\}\) representing the number of machines (including the existing machines and the ones to be purchased) at each important station. We coded a program to search for all the feasible configurations.
\{\Pi_1, \Pi_2, \Pi_3, \ldots\}, i.e., the combinations \{x(j), j = 1, 2, \ldots, I\} that satisfy (i) the budget constraint, and (ii) \(\rho_j(\Pi, d^*) \geq 0.6\) with \(j \in I, \Pi = \{x(j), j \in I\}\) and \(d^* = 98(0.5, 0.5)\). Constraint (ii) implies that we avoid adding more machines to a station once its utilization drops below 0.6. In our case, the resulting number of feasible system alternatives ended up to be 318,153. Due to the extremely large number, it takes about 30 hours (Intel Core 2 Duo E6850 3.0GHz CPU) to generate these alternatives and estimate system capacity for each one of them. The number of alternatives and thus the computation time required will be substantially reduced if the number of selected stations could be decreased by either resorting to subjective judgement (e.g., considering space limitations in the fab) or slightly increasing the threshold utilization level \(\rho_L\). The experiments presented here is intended to show the strenuous use of our proposed approach.

In this part, we simply seek to generate the possible system configurations constrained by the total budget \(b\). To help reduce the tremendously large number of alternatives, basic queueing knowledge (the utilization constraints) is used to screen out the obviously inferior configurations. The utilization of each station \(\rho_j(\Pi, d)\) \((j = 1, 2, \ldots, J = 83)\) depends on the demand rate \(d\). Thus, as \(d\) varies, the important stations selected (as those in Table 1) and the set of generated alternatives may vary as well. In this paper, a single most likely demand \(d^*\) is used to drive the alternative generation. But if a set of discrete demand scenarios is available, then each one can certainly be used to generate a set of system configurations, and the union of these configuration sets can serve as the initial candidate pool. The necessity of using multiple demand scenarios depends on the sensitivity of station utilizations to the change of demand, and has to be evaluated on a case-by-case basis.

4.2 Screening of System Alternatives

The set of system configurations generated from Section 4.1 may include too many alternatives, and it may be practically impossible to characterize and evaluate each of them by its CT-TH profile. Thus, in this section, we introduce a screening mechanism which aims at obtaining, say \(m\), good systems, on all of which the CT-TH modeling (Section 4.3) can be applied within the decision time available. We consider the number \(m\) as a value which could be several to nearly one hundred in practice. In this case study, \(m\) is set as 5 to illustrate the proposed approach.

Depending on the number of alternatives generated in Section 4.1, one or both of the alternative screening approaches described in Sections 4.2.1 and 4.2.2 may be performed. The most
likely demand $d^* = d^* \alpha^*$ is assumed given and also used in these screening processes.

4.2.1 Capacity-Based Pre-Screening

If a large number (> 100) of alternatives is generated in Section 4.1, we first perform a pre-screening based on the system capacity of each candidate configuration. We simply rank the alternatives $\{\Pi_1, \Pi_2, \ldots\}$ by their system capacity $\mu(\Pi, \alpha^*) (i = 1, 2, \ldots)$, and select the top tens of configurations that have the highest capacities. In our case, α^* is assumed to be (0.5, 0.5), and 60 system alternatives were selected with their capacities ranging from 121 to 125 lots/week. If multiple rather than a single demand scenario(s) are given, each candidate system can also be pre-evaluated based on their weighted average utilization across the different demand rates.

4.2.2 Cycle Time-Based Screening via Simulation

The resulting tens of alternatives, which may be the outputs of Section 4.1 or the survivors from Section 4.2.1, can then (i) be scrutinized by experienced personnel for the evaluation of practicality, and/or (ii) be put through the CT-based screening, which is discussed next.

As mentioned already, simulation is usually much more accurate than queueing models in terms of estimating the CT metric for realistic systems. (One can certainly use the queueing CT estimates for the following screening if they are sufficiently accurate for a manufacturing system of interest.) Since this work focuses on steady-state behavior, the CT estimates are obtained from steady-state simulation. A warm-up period of 2 months is chosen for all the system alternatives based on the techniques suggested in Law and Kelton (2000). The total simulation length of each replication is 24 months. In a simulation replication, the cycle time of each product simulated in steady state was recorded, and the average cycle time of a certain type of products provides a CT estimate for that product type. The number of replications required will be determined by a statistical procedure in a sequential manner, as will be discussed below.

We adopt the simulation-based “rank and selection” procedure in Koenig and Law (1985) to select from the 60 candidate configurations a subset of $\ell = 5$ alternatives containing $m = 5$ best systems. Here, the systems are evaluated based on their product mix-weighted average CT of both product types at the demand rate of d^* (i.e., the throughput/release rate of d^*) . The best systems are those that have the lowest weighted average CT. The size of m can be selected by the user, as pointed out earlier. Koenig and Law’s procedure is able to control the probability of correct selection, and to obtain the desired subset in a most computational efficient manner.
Note that these cannot be achieved by conventional mathematical programming methods.

There are two basic input parameters to the Koenig and Law’s procedure. One is the probability of correct selection, which is set as 95% in our experiments. The other is the indifference-zone (IZ) parameter δ, which is the difference amount in expected performance that is deemed practically significant; in our context, if the expected CT of configuration Π_i is at least δ lower than that of Π_j, then alternative Π_i is considered practically superior to Π_j in terms of CT at the most likely demand d^\ast. As in Section 4.2.1, this selection can be straight-forwardly extended to multiple demand scenarios where the systems can be compared based on their weighted average CT performance over the different demand rates. In our case, δ is set as 12 hours, which is roughly 2% of the weighted cycle time. Under such settings, it takes about 20 hours (Intel Core 2 Duo E6850 3.0GHz CPU), which are mainly simulation time, to run Koenig and Law’s procedure and select the 5 best systems out of 60 alternatives. The computation time is sensitive to the desired probability of correct selection and the IZ parameter, which are both user-specified parameters.

The resulting 5 selected system configurations $\{\Pi_1, \Pi_2, \Pi_3, \Pi_4, \Pi_5\}$ are specified in terms of the number of machines at the 19 important stations $\{x(j), j = 1, 2, \ldots, I\}$ ($I=19$), and are given in Table 2. Each column represents a selected alternative, and each row an important workstation considered for expansion. The cell value refers to the number of new machines purchased for the corresponding station under the corresponding alternative.

4.3 CT-TH Characterization of System Alternatives

In this part, we characterize the 5 selected system configurations, denoted as $\{\Pi_1, \Pi_2, \Pi_3, \Pi_4, \Pi_5\}$, by their CT-TH profiles. It is worth mentioning that there are a sequence of works in this regard including Yang et al. (2007, 2008) and Yang (2010). The first two papers address the CT-TH modeling issues for a single-product manufacturing system, and the third one is able to handle multiple-product environments and is hence adopted in this case study to analyze our two-product wafer fab.

Recall that $d = (d_1, d_2) = d\alpha = d(\alpha_1, \alpha_2)$ is used to represent the demand rate vector as well as the system TH, and here d is a two dimensional vector with each element representing the throughput (or equivalently, release rate) of a certain product type. The system utilization $x = d/\mu(\Pi, \alpha)$, the overall release rate of products divided by the system capacity $\mu(\Pi, \alpha)$, can
Table 2: The number of new machines purchased for the 19 important stations under the 5 selected alternatives.

<table>
<thead>
<tr>
<th>Station</th>
<th>Alternative</th>
<th>Station</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Π_1</td>
<td>Π_2</td>
<td>Π_3</td>
</tr>
<tr>
<td>E_SINK</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MATRIX</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>LEITZ</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CRIT_DEV</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DIFF_SINK2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NONCRIT_DEV</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>UV_BAKE</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PEAK</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>STEPPER</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HIGH_CURR_IMP</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

be calculated analytically for a given system Π and PM α (Section 4.1). Thus, we have:

$$c_k(\Pi, d) = c_k(\Pi, d, \alpha) = c_k(\Pi, d/\mu(\Pi, \alpha), \alpha) = c_k(\Pi, x, \alpha), k = 1, 2. \quad (1)$$

The objective of Yang (2010) is to estimate for a system configuration Π the functional performance surfaces $\{c_k(\Pi, x, \alpha); k = 1, 2\}$, from which the CT of product k can be derived for any product flow described by d.

To efficiently generate the target surfaces $\{c_k(\Pi, x, \alpha); k = 1, 2\}$, Yang (2010) integrates queueing analysis, adaptive statistical methods, and computer simulation. The queueing models play two essential parts. First, the analytical analysis of the CT-TH relationships suggests that the target surfaces are smooth and differentiable within a PM subregion where the bottleneck (BN) station stays unchanged, and thus motivates the partition of the PM region into such constant-BN subregions before the CT-TH metamodeling. (Recall that the station utilizations and hence the locations of BN station depend on PM.) Second, the queueing network models (e.g., Hopp 2002) are used to perform the capacity and BN analysis, and to divide the PM region into a number of constant-BN subregions. The neural network (NN)-based metamodeling is then applied on each PM subregion to obtain the functional approximations of the target surfaces. The
metamodeling approach in Yang (2010) is distinct from the existing NN modeling work in three major aspects: First, instead of treating an NN as a black box, the NN geometry is investigated and utilized in the metamodeling of CT-TH surfaces; second, a progressive model-fitting strategy is developed to achieve the parsimonious NN adequate to characterize the CT-TH relationship; third, a design of experiment strategy, particularly suitable to NN modeling, is developed to efficiently collect simulation data for the estimation of the NN models.

The basic idea of CT-TH modeling is as follows. Simulation is performed at a set of carefully selected design points in the input space \((x, \alpha)\); from the data collected, models (i.e., NN) are fitted to obtain the functional approximation of the CT-TH surfaces within each constant-BN subregion. The approach in Yang (2010) was demonstrated efficient in generating CT-TH profiles through empirical evaluation of extensive systems including multi-product wafer fabs. Here, we apply it on the selected alternatives respectively. For each system configuration \(\Pi\), its CT-TH surfaces \(\{c_k(\Pi, x, \alpha), k = 1, 2\}\) are estimated from the simulation data. The set up of the simulation experiments (e.g., warm-up period and simulation length) was already explained in Section 4.2.2.

We take alternative \(\Pi_1\) for example, and present the experimental results for the generation of \(\{c_k(\Pi, x, \alpha) = c_k(\Pi_1, x, \alpha_1), k = 1, 2\}\). Note that since \(\alpha_1 + \alpha_2 = 1\), \(\alpha\) is determined by \(\alpha_1\). Hence, the system utilization \(x\) and the fraction of product 1 \(\alpha_1\) are considered as independent variables. The range of interest for utilization \(x\) is set as \([0.75, 0.85]\), which is considered as the typical range within which semiconductor manufacturers run their facility (Hopp 2007). In practical use of the method, the utilization range can be adjusted by the user depending on the utilization levels at which the system will be run. The PM \(\alpha_1\) is allowed to vary over \([0.25, 0.75]\). The two-dimensional input region spanned by \(x\) and \(\alpha_1\) are defined as \([0.75, 0.85] \times [0.25, 0.75]\), the Cartesian product of the two sets \([0.75, 0.85]\) and \([0.25, 0.75]\). Queueing analysis was first performed to divide the input region into constant-BN subregions with stations NONCRIT_DEV and DRIVE_OX (Table 1) being the BN respectively; and the PM level with \(\alpha_1 = 0.44\) was identified as BN-shift point, and thus the resulting two constant-BN subregions are: \([0.75, 0.85] \times [0.25, 0.44]\) and \([0.75, 0.85] \times [0.44, 0.75]\). In the entire input region, a total of 15 design points were selected following the design strategies in Yang (2010), and about 2.5 hours (Intel Core 2 Duo E6850 3.0GHz CPU) were spent running simulation at those design points. Based on the data collected, NN models were fitted for different subregions respectively. For products of type 1, the estimated CT-TH models for product 1 in the two subregions are given as equations (2)
and (3) respectively:

\[
\begin{align*}
c_1(\Pi_1, x, \alpha_1) &= 573.49 + \frac{11,593}{1 + \exp(24.86 - 15.55x - 19.04\alpha_1)} \\
&+ \frac{109}{1 + \exp(1.509 - 6.56x + 11.21\alpha_1)} \quad \alpha_1 \in [0.25, 0.44] \text{ and } x \in [0.75, 0.85]
\end{align*}
\]

and

\[
\begin{align*}
c_1(\Pi_1, x, \alpha_1) &= 491.39 + \frac{537}{8,475} \\
&+ \frac{1 + \exp(13.61 - 19.89x + 5.83\alpha_1)}{1 + \exp(349.612 - 426.79x + 39.85\alpha_1)} \quad \alpha_1 \in [0.44, 0.75] \text{ and } x \in [0.75, 0.85]
\end{align*}
\]

For product 2, the fitted CT-TH models are given as (4) and (5):

\[
\begin{align*}
c_2(\Pi_1, x, \alpha_1) &= 598.52 + \frac{712.88}{834.42} \\
&+ \frac{1 + \exp(139.06 - 31.04x - 254.61\alpha_1)}{1 + \exp(14.79 - 12.99x - 8.37\alpha_1)} \quad \alpha_1 \in [0.25, 0.44] \text{ and } x \in [0.75, 0.85]
\end{align*}
\]

and

\[
\begin{align*}
c_2(\Pi_1, x, \alpha_1) &= 643.06 + \frac{64,850}{20} \\
&- \frac{1 + \exp(-208.33 - 749.60x + 1,218.20\alpha_1)}{1 + \exp(15.02 - 14.60x + 4.60\alpha_1)} \quad \alpha_1 \in [0.44, 0.75] \text{ and } x \in [0.75, 0.85]
\end{align*}
\]

With fitted models as equations (2)–(5) for each alternative, the system configurations can be evaluated and compared based on their CT-TH profiles, which fully characterize the systems’ performance over a wide range of demand scenarios represented by \(d = d(\alpha_1, \alpha_2)\). Figures 3 and 4 are designed to graphically illustrate how the configuration alternatives, say \(\Pi_1\) and \(\Pi_2\), can be compared using their fitted CT-TH models.

For the sake of graphical clarity, two-dimensional curves at fixed PM, as opposed to three-dimensional response surfaces, are plotted in Figures 3 and 4. Note that for any given PM \(\bar{\alpha}_1 \in [0.25, 0.75]\), characteristic curves \(\{c_k(\Pi, d, \bar{\alpha}_1), k = 1, 2\}\), which is expressed in terms of the overall release rate \(d\), can be easily derived from the fitted models \(c_k(\Pi, x, \alpha_1)\) by setting \(\alpha_1 = \bar{\alpha}_1\) and \(x = d/\mu(\Pi, \bar{\alpha}_1)\).

Figure 3 shows characteristic curves \(\{c_k(\Pi, d, 0.5); \Pi = \Pi_1, \Pi_2; k = 1, 2\}\) for configurations \(\Pi_1\) and \(\Pi_2\) at the fixed PM level of \(\alpha_1 = 0.5\). Figures 3(a) and (b) correspond to product type 1 and 2 respectively. Specifically, take Figure 3(a) for example. The solid curve represents \(c_1(\Pi_1, d, 0.5)\), and the dotted curve \(c_1(\Pi_2, d, 0.5)\). The horizontal axis represents the overall
release rate (or equivalently, the system throughput) \(d \). The range of \(d \), \([d_L, d_U]\), shown in the graph corresponds to the utilization range of \([0.75, 0.85] \) for the given PM \(\alpha_1 = 0.5 \); that is, \(d_L \approx 0.75\mu(\Pi_1, 0.5) \approx 0.75\mu(\Pi_2, 0.5) \) and \(d_U \approx 0.85\mu(\Pi_1, 0.5) \approx 0.85\mu(\Pi_2, 0.5) \). The approximations here hold because the capacities of both alternatives, \(\mu(\Pi_1, 0.5) \) and \(\mu(\Pi_2, 0.5) \), are close to each other, which is consistent with the pre-screening performed in Section 4.2. Recall that one of the screening criteria is the magnitude of system capacity; system configurations with the highest capacity will be selected and further considered for CT-TH modeling. The vertical axis represents the expected CT of product 1 at certain values of \(d \), which corresponds to a TH vector of \(d(0.5, 0.5) \) in Figure 3(a). Figure 3(b) is the product 2 counterpart of Figure 3(a), and plots \(\{c_2(\Pi, d, 0.5), \Pi = \Pi_1, \Pi_2\} \).

Figure 4 has the same interpretation as Figure 3 except that the PM \(\alpha_1 \) is fixed at 0.25. That is, Figure 4 displays \(\{c_k(\Pi, d, 0.25); \Pi = \Pi_1, \Pi_2; k = 1, 2\} \) for the two alternatives being compared. Note that the range of the horizontal axis in Figure 4 is quite different from that in Figure 3. This is because that product 2 requires more resources than product 1, and thus the system capacity at the PM of \(\alpha_1 = 0.25 \) differs markedly from that at \(\alpha_1 = 0.5 \). In both Figures 3 and 4, \([d_L, d_U]\) are set to cover the utilization range of \([0.75, 0.85]\) so that the facility will not be overloaded or underloaded regardless of the system capacity.

Again, at any PM level, characteristic curves as those in Figures 3 and 4 can be generated for each of the five selected system alternatives. As examples, Figures 3 and 4 provide the following insights: The performance superiority/inferiority of a system configuration heavily depends on the demand scenario \((d_1, d_2) = d(\alpha_1, \alpha_2) \). For instance, comparing the left and right ends of Figure 3(a), \(\Pi_2 \) excels over \(\Pi_1 \) across the demand range \(\{d(0.5, 0.5), d \in [91, 97]\} \) with an expected CT for product 1 about 16 hours lower than that of \(\Pi_1 \); whereas, around the demand level of 102(0.5, 0.5), \(\Pi_1 \) beats \(\Pi_2 \) with a CT difference of about 34 hours for product 1. As to the CT performance for product 2, Figure 3(b) shows that alternative \(\Pi_1 \) is superior over the demand of \(\{d(0.5, 0.5), d \in [91, 100]\} \) with the biggest CT saving of about 50 hours. If the demand happens to fall in \(\{d(0.25, 0.75), d \in [70, 80]\} \), then according to Figure 4, \(\Pi_1 \) and \(\Pi_2 \) are practically equivalent.

For each alternative \(\Pi \), the CT-TH models \(\{c_k(\Pi, d, \alpha), k = 1, 2\} \) provide a comprehensive performance profile over a wide range of demand scenarios, and hence give decision makers a complete picture of the system’s behavior under future uncertainties. We emphasize that the models \(\{c_k(\Pi, d, \alpha), k = 1, 2\} \) are simple mathematical equations, and once established, they can be directly used for performance evaluation and decision optimization without requiring any
Figure 3: Performance curves at $\alpha_1 = 0.5$ for two different system alternatives.
(a) $\{c_1(\Pi, d, 0.5); \Pi = \Pi_1, \Pi_2\}$; (b) $\{c_2(\Pi, d, 0.5); \Pi = \Pi_1, \Pi_2\}$

Figure 4: Performance curves at $\alpha_1 = 0.25$ for two different system alternatives.
(a) $\{c_1(\Pi, d, 0.25); \Pi = \Pi_1, \Pi_2\}$; (b) $\{c_2(\Pi, d, 0.25); \Pi = \Pi_1, \Pi_2\}$

additional simulations.

One of the important performance metrics that can be derived from the CT-TH models is the profit, which takes into account the total revenue, capacity expansion cost, production cost, cost for inventories and delivery delay, etc. All these numbers can be estimated from the CT-TH models. For instance, the WIP inventory cost is a function of WIP, which is equal to the product of cycle time and throughput (Little’s Law); the lead time (the amount of time between
the placing of an order and the receipt of the goods ordered) is dominated by manufacturing CT, which depends on the system TH. Nazzal et al. (2006) provides an example of CT-TH based economic analysis, which can be directly applied to our studies to evaluate the various system alternatives once they have been characterized by their CT-TH profiles. Aside from the economic metric, the CT-TH models are also useful in evaluating the potential loss of market share. Suppose that the demand happens to be unexpectedly high, then the two basic options we may have are: (i) maintain the TH that leads to a reasonable CT, but risk losing the unsatisfied demand to competitors; and (ii) push up the TH to match demand, but risk alienating customers with a long lead time. The CT-TH models can be used to support such trade-off decisions.

To conclude this section, it is worth mentioning again that it is the purpose of this work to provide decision makers with the original and complete quantitative profiles that fully characterize different system alternatives, i.e., the CT-TH models \(\{c_k(\Pi, d), k = 1, 2\} \). From these models, various performance metrics such as profit/cost can be evaluated over a wide range of demand patterns; and moreover, when we consider factors that are hard to quantify (e.g., loss of market share), the CT-TH profiles can also provide valuable support.

5 Computational and Statistical Tools

To perform this case study, the simulation model representing a SEMATECH wafer fab was developed in Microsoft Visual C++, and the statistical procedures involved (Sections 4.2.2 and 4.3) were implemented in Matlab. Our simulation-based statistical analysis is sequential in that (i) simulation experiments are carried out at multiple stages; (ii) interim data analysis are performed at the end of each stage; and (iii) further experiments are guided by the information already collected. The C++ simulation engine is integrated with the Matlab code, and thus, the screening/modeling procedure is able to automatically iterate between sampling via simulation, analyzing the collected data, and designing subsequent experiments.

6 Discussions

This work proposes a decision-making framework for capacity expansion of a semiconductor fabrication system. The approach integrates queueing analysis, computer simulation, and adaptive statistical methods to generate a number of good reconfiguration alternatives, whose comprehensive performance is fully characterized by their CT-TH profiles. The proposed framework
is demonstrated in a case study performed on a SEMATECH dataset representing a real wafer fab. Our approach is distinct from the existing capacity planning work in (i) the unique fusion of queueing and simulation methods and (ii) the complete characterization of reconfiguration alternatives by their CT-TH profiles, which allows for the performance evaluation over a wide range of demand scenarios.

In this case study, attention is centered on the relationship between the first moment (mean) of CT and the TH. However, the percentiles of CT also plays an important role in strategic planning for manufacturing, and is considered essential in quoting the lead time with pre-specified customer service level (Hopp 2007). For instance, the functional relationship between the 95th percentile of CT and the TH can be used to balance the TH level in production and customer lead time while achieving a 95% of on-time delivery. The methods in this paper can be extended to CT percentile estimation, and the key lies in the adaptation of the Stage 3 metamodeling. As pointed out in Yang (2010), the NN metamodeling can be adapted to simultaneously estimate the first, second, third, and fourth moments of CT as functions of TH. With the first three moments, any percentiles of CT can be estimated at any TH following the methods proposed in Yang et al. (2008). Bekki et al. (2010) provides a method which utilizes the first four moments to estimate percentiles of CT. Using the percentile as well as the mean CT-TH profiles to guide capacity expansion will be explored in our future work.

REFERENCES

