Proposal of Exponentially Sensitive Stress based Sensor using Flexure-FET

Ankit Jain and M. A. Alam
(jankit@purdue.edu)

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN, USA
Outline

Flexure-FET

Sub-Linear vs. Exponential Response

Modeling Framework

\[
EI \frac{\partial^4 y}{\partial x^4} + \left(P - \frac{EA}{2L} \int_0^L \left(\frac{\partial y}{\partial x} \right)^2 \, dx \right) \frac{\partial^2 y}{\partial x^2} = -\frac{1}{2} \varepsilon_0 E_{air} W
\]

\[
V_G = \left(y + \frac{y_d}{\varepsilon_d} \right) E_{air} + \psi_s
\]

Beam Mechanics and Poisson’s Equation

Flexure-FET Response

\[
\Delta y_c (nm) \quad V_G (V)
\]

Conclusions
Sub-Linear Response of Existing Sensors

\[y \propto \Delta \sigma \]
\[f \propto \sqrt{\Delta \sigma} \]
\[R \propto \Delta \sigma \]

Deflection
Resonance Frequency
Piezo Resistance

Stimuli → Cantilever → Sensing layer → y

- pH sensor linear
- Vapor sensor sub-linear
- Piezoresistive bio-sensor logarithmic

Graphs:
- R. Bashir et al., APL, 2002
- D. R. Southworth et al., APL, 2010
- Wee K. et al., Biosens. Bioelec., 2005
1. Classical mechanical sensor for transduction
2. Field effect transistor underneath for direct electrical read-out

Exponential Response of Flexure-FET

Suspended-Gate FET

Mechanical property of gate \rightarrow drain current

$S = \frac{I_{DS}(\sigma \neq 0)}{I_{DS}(\sigma = 0)}$
Essentials of Flexure-FET

\[\sigma = 0 \rightarrow \sigma \neq 0 \]
\[y \rightarrow y + \Delta y \]
\[I_{DS1} \rightarrow I_{DS2} \]

Sub-threshold Conduction

\[\frac{I_{DS2}}{I_{DS1}} \propto \exp(\Delta y) \]

Close to pull-in instability

Maximum \(\Delta y \)

Exponential Response
Modeling Framework

\[EI \frac{\partial^4 y}{\partial x^4} + P - \frac{EA}{2L} \int_0^L \left(\frac{\partial y}{\partial x} \right)^2 dx \frac{\partial^2 y}{\partial x^2} = -\frac{1}{2} \varepsilon_0 E_{air}^2 W \]

\[V_G = \left(y + \frac{y_d}{\varepsilon_d} \right) E_{air} + \psi_s \]

Beam Mechanics and Poisson’s Equation

Outline

Flexure-FET

Sub Linear vs. Exponential Response

Flexure-FET Response

Conclusions
1. Beam Mechanics

\[EI \frac{\partial^4 y}{\partial x^4} + \left(\sigma A - \frac{EA L}{2L} \left(\frac{\partial y}{\partial x} \right)^2 dx \right) \frac{\partial^2 y}{\partial x^2} = -\frac{1}{2} \epsilon_0 E_{air}^2 W \]

2. Kirchhoff’s Voltage Law

\[V_G = \left(y + \frac{y_d}{\epsilon_d} \right) E_{air} + \psi_s \]

3. Poisson’s Equation

\[E_{air} = \frac{\sqrt{2q\epsilon_s N_A}}{\epsilon_0} \left[\psi_s + \left(\exp \left(-\frac{q\psi_s}{k_B T} \right) - 1 \right) \frac{k_B T}{q} \right]^{1/2} \]

Equation of beam mechanics and Poisson’s equation are solved self-consistently.

H. Kam et al., TED, 2009
A. Jain et al., UGIM, 2010
A. Jain et al., IRPS, 2012
Outline

Flexure-FET

Sub-Linear vs. Exponential Response

Modeling Framework

Beam Mechanics and Poisson's Equation

Flexure-FET Response

Conclusions
Combining pull-in instability and sub-threshold conduction will lead to optimal sensitivity towards stress change.
Flexure-FET Response

Exponential change in drain current for slight change in stress.
Flexure-FET is Better in Every Aspect

Piezoresistive
- Wee K. et al., Biosens. Bioelec., 2005
- A. Boisen et al., Mat. Today, 2009
- G. Yoshikawa et al., Nano Lett., 2011

Integrated FET
- G. Shekhawat et al., Science, 2006
- V. Seena et al., JMEMS, 2012

Linear response
- Piezoresistive
- Integrated FET

Electrical
- Flexure-FET
- Static mode

Optical
- Flexure-FET
- Electrical
- Super-linear

Dynamic
- Issue of fluid damping

Static
- Dynamic

Laser
- PSD

D. R. Southworth et al., APL, 2010
R. Bashir et al., APL, 2002
N. V. Lavrik et al., Rev. Sci. Ins., 2004
J.L. Arlett et al., Nature Nano., 2011
Conclusions

Flexure-FET combines classical MEMS and FET behavior to overcome the fundamental bottlenecks of nanomechanical sensors.

Exponential sensitivity of Flexure-FET can enable early stage detection of fatal diseases like cancer.

Simpler read-out of Flexure-FET can simplify the design of hand-held health care devices.