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Heteroscedasticity

In this lecture we discuss methods for dealing with heteroscedasticity
- that is, the case where the variance of each error term is different,
and potentially depends on x .

We begin by discussing consequences for the OLS estimator, and then
move on to discuss other estimation approaches for the general
problem where the covariance matrix is unknown.
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Heteroscedasticity

Dealing with the heteroscedasticity problem involves substituting

with

That is, each variance of the error vector ε is potentially different. We
continue to assume, however, that the errors are uncorrelated so that the
off-diagonals of Ω are zero.
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Heteroscedasticity

The first question to address is, perhaps, reasonably obvious:

What happens when we apply our OLS estimator β̂ = (X ′X )−1X ′y when
heteroscedasticity is present?

Is the OLS estimator still unbiased? Note:
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Heteroscedasticity

One can also show that the OLS estimator is consistent in general. So
what’s the problem? OLS is unbiased and consistent, so why does
heteroscedasticty get any press at all?
Note

so that

When Ω = σ2In, this reduces to the “traditional” formula:
σ2Ex

[
(X ′X )−1

]
. Thus,
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Heteroscedasticity

Any ideas how to fix this problem?
It would seem as if replacing Ω with an estimate, say

Ω̂ ≡ diag{ε̂2
i }

is pointless since Ω contains as many unknown parameters as observations!

Any thoughts on why this might work despite this problem?

White (1980, Econometrica) notes all that is required to consistently
estimate the variance of the asymptotic distribution is a consistent
estimate of the k × k matrix plim

[
1
nX
′ΩX

]
, for which (under a few

additional assumptions)
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Heteroscedasticity

Concerning the asymptotics, note:

β̂ = β + (X ′X )−1X ′ε

which implies
√
n(β̂ − β) =

(
X ′X

n

)−1 1√
n
X ′ε.

For the second term above we can show, similar to the OLS derivation:

where, for the case of heteroscedasticity,
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Heteroscedasticity

Putting all these pieces together, then, we obtain:

The limiting covariance matrix is not known since: (1) it is defined in terms of plims and (2) σ2
i

are not known. We can estimate this matrix by replacing the plim terms with their sample
counterparts, as well as replacing σ2

i with σ̂i
2. This gives:

[Note that it is incorrect to write that the above is consistent; rather, we can consistently

estimate the covariance matrix appearing in the right-hand side of
√
n(β̂ − β) above.]
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Heteroscedasticity

So, let’s review: In the presence of heteroscedasticity, of unknown form,
the preceding derivations suggest the following prescription:

1 Run OLS, since it remains unbiased and consistent.

2 Get the fitted residual vector ε̂ = y − X β̂ and, from it, form

Ω̂ = diag{ε̂2
i }ni=1.

3 Calculate the heteroscedasticity-robust standard errors to correct any
inferences you make using the OLS estimator in the presence of
heteroscedasticity.
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Heteroscedasticity

Moving beyond the pure heteroscedasticity case, we might ask the
following, related question:

Suppose that E (εε′|X ) = Ω is known. Even though OLS retains some
desirable properties, and we can “fix” our inferences in the presence of
heteroscedasticity,
Is it possible to do better than OLS?

That is, can we come up with some other estimator (that is both unbiased
and consistent) yet more efficient than OLS?

The short answer is “yes” and a theorem which speaks to this result is
known as Aitken’s Theorem. This theorem states that an estimator,
known as generalized least squares is, in fact, more efficient than OLS.
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Theorem

In the linear regression model

y = Xβ + ε, E (εε′|X ) = Ω

with Ω known, the generalized least squares estimator:

is the best linear unbiased estimator of β (i.e., it is efficient among this
class of estimators).
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Proof.

Since Ω is positive definite and symmetric, it follows from earlier lectures
that we can write

where CC ′ = C ′C = In and Λ is diagonal with positive elements.
Define Λ∗ as the diagonal matrix whose elements are the reciprocal square
roots of the elements of Λ. Finally, define

noting that H is invertible. Then, note
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Proof.

The last step follows since, for example

Likewise, we can show Ω(CΛ−1C ′) = In.
Now, let us go back to our regression model:

y = Xβ + ε, E (εε′|X ) = Ω

and premultiply everything by H:

Justin L. Tobias (Purdue) Heteroscedasticity 13 / 15



Proof.

We represent this transformed regression model as

where z̃ is just notation to reflect that the variable z has been
premultiplied by H. Note that

So, the transformed model meets all the requirements of the
Gauss-Markov theorem, and thus we can apply it.
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Proof.

Specifically, we can state that

is the minimum variance linear unbiased estimator of β.
We continue by noting that

Since H is invertible, the argument reverses and we can show that the
class of linear estimators in the (X , y) space is equivalent to those in the
(X̃ , ỹ) space. It follows that the GLS estimator is, in fact, the most
efficient linear unbiased estimator of β in the case of general (but known)
covariance matrix.
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