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Instrumental Variables

The failure of OLS methods stems from a violation of

or the weaker condition

If this condition were to hold, then

In practice, of course, the population expectation is unknown and thus we
replace the expectation with its sample counterpart:

which leads to
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Instrumental Variables

Once we have viewed this problem as a failure of a moment condition, it
suggests a possible course for how we might approach solving it.

To this end, suppose that X is n × k and that there is another set of k
variables, stacked into an n × k matrix Z , that satisfy

Again, the sample analog of this condition will yield an estimator of the
form:

known as the instrumental variables or IV estimator.
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Instrumental Variables

Under certain conditions, the IV estimator will be consistent. Specifically,
we require:

1 The instruments Z are correlated with X in the sense that

2 The instruments are uncorrelated with ε in the sense that
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Instrumental Variables

Under these conditions it is almost immediate that the IV estimator will be
consistent for β in the linear regression model. To see this, note:

β̂IV = (Z ′X )−1Z ′y

= β + (Z ′X )−1Z ′ε

so that

The estimator is not typically unbiased, however, since:
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Instrumental Variables
Similar to our results for the OLS estimator, we can also obtain an
asymptotic distribution for the IV estimator:

y = Xβ + ε, E (ε|X ) 6= 0, E (εε′|X ,Z ) = σ2In

β̂IV = (Z ′X )−1Z ′y

= β + (Z ′X )−1Z ′ε

so that
√
n(β̂IV − β) =

(
Z ′X

n

)−1( 1√
n
Z ′ε

)
.

Again, a CLT can be applied to the second term to get

where
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Instrumental Variables

Our assumption that Z is correlated with X also implies:

n−1Z ′X
p→ Qzx 6= 0.

Thus,

Replacing Qzz with 1
nZ
′Z and Qzx with 1

nZ
′X , we obtain

̂AsyVar(β̂IV |X ,Z ) = σ̂2
1

n

(
1

n
Z ′X

)−1(1

n
Z ′Z

)[(
1

n
Z ′X

)−1]′
or

̂AsyVar(β̂IV |X ,Z ) = σ̂2(Z ′X )−1Z ′Z (X ′Z )−1.

Justin L. Tobias (Purdue) February 21, 2012 7 / 28



Instrumental Variables

A consistent estimator of the variance parameter is obtained as:

σ̂2 =
1

n − k

n∑
i=1

(yi − xi β̂IV )2.

Corrections for heteroscedasticity can also be made an a straightforward
way.
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In the foregoing discussion we introduced the IV estimator. In that
discussion, we supposed there were just as many instruments as
variables that required instrumenting. This is called the just identified
case.

Here, we relax this requirement and show what to do when we have
more instruments than are necessary (This is called the overidentified
case). If we have too few instruments, then we are in trouble!
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Too many instruments?

Consider the regression model:

y = Xβ + ε, E (X ′ε) 6= 0, E (εε′|X ) = σ2In, E (Z ′ε) = 0.

In the above, X is n × k and Z is n × j , j > k .

It is clear that direct application of the formula:

β̂IV = (Z ′X )−1Z ′y

is not appropriate as the matrix product Z ′X is no longer square.

Any ideas what we should do, since we have too much information?
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Too many instruments?
In some way, we must select k instruments among the set of j possible
instruments. We restrict ourselves to linear combinations of the elements
of Z . To this end, we can choose a n × k set of instruments W , by
forming

and R is a j × k matrix with rank k . For example, setting:

R =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


=

[
Ik

0j−k,k

]
.

chooses only the first k elements of Z as the k elements of W .
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Two Stage Least Squares

Based upon results in our previous lecture, the approximate (dropping
expectations) asymptotic covariance matrix for this IV estimator is

β̂IV = (W ′X )−1W ′y .

AsyVar(β̂IV |W ,X ) = σ2(W ′X )−1W ′W (X ′W )−1.

Now consider a particular, (and at this point completely unjustified),
choice of R.

Define the two stage least squares (2SLS) estimator of β as:

Note that this emerges upon choosing

W = ZR, R = (Z ′Z )−1Z ′X .
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Two Stage Least Squares

Under this choice, the conditional asymptotic variance-covariance matrix
of the 2SLS estimator is:

Var(β̂2SLS) = σ2
[
X ′Z(Z ′Z)−1Z ′X

]−1 [
X ′Z(Z ′Z)−1Z ′Z(Z ′Z)−1Z ′X

] [
X ′Z(Z ′Z)−1Z ′X

]−1

which reduces to

AsyVar(β̂2SLS |Z ,X ) = σ2
[
X ′Z (Z ′Z )−1Z ′X

]−1
.
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Two Stage Least Squares
Let

X ∗ ≡ Z (Z ′Z )−1Z ′X .

With this definition, we can write

AsyVar(β̂2SLS |X ,Z ) = σ2(X ∗′X ∗)−1

since

X ∗′X ∗ = X ′Z (Z ′Z )−1Z ′Z (Z ′Z )−1Z ′X = X ′Z (Z ′Z )−1Z ′X .

Also write:

where
Z ′η = Z ′X − Z ′Z (Z ′Z )−1Z ′X = 0.
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Two Stage Least Squares
Furthermore,

from this last result.

Where we are going with all of this may seem unclear. To this point, we
have introduced a general (linear) IV estimator, derived its conditional
asymptotic covariance matrix, and also introduced a specific IV estimator,
known as two stage least squares, and derived its conditional asymptotic
variance.

We claim that β̂2SLS is asymptotically efficient among this class. That is,
choosing

R = (Z ′Z )−1Z ′X

is the best choice, as it will produce a linear estimator among the available
instruments that has smallest (asymptotic) variance.
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Two Stage Least Squares

To prove this, we will show that the difference between the asymptotic
variances of β̂IV and β̂2SLS is a positive semidefinite matrix.

In order to do this, we first borrow a result from linear algebra which
states:

A−1 − B−1 is p.s.d. ⇒ B − A is p.s.d.

Thus, we can work with the difference of the inverse covariance matrices
(in reverse order) to establish the result.
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Two Stage Least Squares

In the above, let:

B = σ2(W ′X )−1W ′W (X ′W )−1 ⇒ B−1 = σ−2X ′W (W ′W )−1W ′X

and
A = σ2(X ∗′X ∗)−1 ⇒ A−1 = σ−2X ∗′X ∗.

The theorem on the previous page implies it is sufficient to show
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Two Stage Least Squares

To demonstrate this result, first note:

from our earlier derivation. Thus,

We can substitute this into the difference above to obtain:
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Two Stage Least Squares

This last result shows that the difference between the inverse matrices is
positive semidefinite, whence B − A is also positive semidefinite.

Therefore, we have established that the 2SLS estimator is the best one, as
it determines the “optimal” weighting of the instruments. Importantly,
note that all of the instruments are used and ignoring valid instruments
results in a loss of (asymptotic) efficiency. (A better proof, using
expectations of the involved quantities follows similarly).

In what follows we investigate what the 2SLS estimator is doing, and why
it is given this name.
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Two Stage Least Squares

Recall the definition of X ∗ and the 2SLS estimator:

X ∗ = Z (Z ′Z )−1Z ′X β̂2SLS =
[
X ′Z (Z ′Z )−1Z ′X

]−1
X ′Z (Z ′Z )−1Z ′y .

Note:

1 (Z ′Z )−1Z ′X denotes the matrix of regression coefficients obtained
from regressing each column of X (i.e., each X variable) on Z .

2 X ∗ = Z (Z ′Z )−1Z ′X denotes the matrix of fitted values from these
regressions.

3 Since
β̂2SLS = (X ∗′X ∗)−1X ∗′y ,

the following interpretation can be given to this estimator:
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Two Stage Least Squares

Step 1:

For each endogenous variable in the model, say xl , obtain a vector of fitted
values, x̂l from a regression of xl on a constant, all elements in Z and all
exogenous elements of X .

Step 2: Replace the endogenous variables with their fitted values, and
then regress y on a constant, the exogenous X variables and the collection
of fitted values (which replace the endogenous variables in the model).

The estimates produced from this regression are the 2SLS estimates which
are consistent and asymptotically efficient under the given assumptions.
(Also note that the exogenous variables serve as IVs for themselves).
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Two Stage Least Squares

Finally, note that the asymptotic covariance matrix for the 2SLS estimator
can be calculated as:

AsyVar(β̂2SLS |X ,Z ) = σ̂2(X ∗′X ∗)−1

with

σ̂2 =
1

n − k
(y − X β̂2SLS)′(y − X β̂2SLS),

which, importantly, uses the observed X s and does not replace them with
their fitted values.
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IV With Measurement Error

Consider, again, the measurement error problem:

yi = x∗i β + ui ,

xi = x∗i + ωi .

We run a regression using data that we have:

yi = xiβ + ηi , ηi = ui − ωiβ.

Suppose ∃Z (Z is n × 1 and X is n × 1) such that:

1 Z is correlated with X so that Z ′X/n→ Q 6= 0,

2 Z is uncorrelated with the regression error u and the measurement
error ω in the sense that Z ′u/n

p→ 0 and Z ′ω/n
p→ 0
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IV With Measurement Error

In this case it is clear that the IV estimator will be consistent since:

β̂IV = β +

(
Z ′X

n

)−1(Z ′(u − ωβ)

n

)
,

and the last term clearly goes to zero in probability. Consider the following
example:

where Ed denotes education (assumed exogenous) and A is an ability (test
score) measure. further, Ri potentially includes lots of other things (which
we assume are exogenous).

A common criticism of A is that it is an error-ridden measure of true
ability; one observed test score is not an accurate measure of actual
cognitive skills. Consequently, OLS estimation of the above produces
biased and inconsistent estimates.
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IV With Measurement Error

So, what can we do to fix this problem?
One possibility is to come up with an instrument. That is, we need to find
a variable that is:

1 Correlated with Ability.

2 Uncorrelated with u (implying that it is uncorrelated with the error of
measurement in Ai as well as the “true” regression disturbance.)

Some possibilities include:

1 Parental Education / Parental Income

2 Sibling’s Test Score
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IV With Measurement Error

Regardless of what you choose, suppose you settle on an n × 1 vector, say
F to use as an IV for A. In this case, you would construct:

Z = [1 Ed F R], X = [1 Ed A R]

and compute
β̂IV = (Z ′X )−1Z ′y .

If F was, say n × l , l > 1, we would first:

1 Regress A on 1, Ed , R and Z and get the fitted values, say Â.

2 Regress y on 1, Ed , Â and R to obtain the 2SLS estimator. Note
that this estimator is asymptotically more efficient than selecting any
one of the elements of Z .
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IV With Simultaneity
Consider, again, the SEM discussed before:

y1 = α1y2 + X1β1 + ε1

y2 = α2y1 + X2β2 + ε2

Consider estimation of the first equation. The variable y2 needs to be
instrumented, since it is not uncorrelated with ε1.

Any suggestions?

If x2 is a scalar, it can be used as an IV for y2. (If X2 has several elements,
2SLS can be applied). This works since x2 satisfies all the needed
conditions as it is correlated with y2 (see reduced form) and also
uncorrelated with ε1, by assumption.
Therefore, we can form:

and calculate
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IV With Simultaneity

A TV show that I used to like, the King of Queens, illustrated a type of
simultaneity problem:

Doug: “I’m always eating because you’re always yelling at me!”

Carrie: “I’m always yelling at you because you’re always eating!”

Eating = α0 + α1Yelling + β1X1 + ε1

Yelling = α2 + α2Eating + β2X2 + ε2

Any thoughts on what might be legitimate IV’s here?
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