IV and Control Function Approaches

Econ 671

Purdue University

Linear Projection

Let's start out with a little detour to review linear projection. Write (consider a representative observation, rather than the equation stacked over all observations)

$$
y=\beta_{0}+x \beta_{1}+\nu,
$$

where x is $1 \times k$ and

It follows that

$$
E(\nu)=E(y)-\beta_{0}-E(x) \beta_{1}=E(y)-\left[E(y)-E(x) \beta_{1}\right]-E(x) \beta_{1}=0
$$

In addition, note (since ν is mean-zero):

Linear Projection

where $(x-E(x))$ is, again, $1 \times k$ so that

$$
[x-E(x)]^{\prime}[y-E(y)]=[x-E(x)]^{\prime}[x-E(x)] \beta_{1}+[x-E(x)]^{\prime} \nu .
$$

Taking expectations through, and noting again that ν is mean-zero, we obtain:
and given the definition of β_{1} above, we obtain

Note that this decomposition is really definitional; however, this does not imply that ν and x are independent or that $E(\nu \mid x)=0$. The linear projection should not be confused with the conditional expectation; when we assume $E(\nu \mid x)=0$, we are assuming that the conditional expectation function is linear (and would, then, coincide with the linear projection).

2SLS Revisited

Consider a general regression model with an endogeneity problem:
where y_{2} is considered endogenous, but Z_{1} is exogneous, in a sense to be defined formally below. Here, we suppose that y_{2} is a scalar random variable, but it need not be, and the arguments that follow generalize to the case of multiple endogenous variables (assuming the model is identified).
A set of instruments Z, (which is $n \times I$, and includes Z_{1} as a strict subset) is available, and are assumed to satisfy the orthogonality condition:

Implementation of the 2SLS estimator first requires fitted values for y_{2}. To obtain these, we consider the first-stage model (which we think about as a linear projection of y_{2} onto Z):

2SLS Revisited

leading to

$$
\hat{y}_{2}=Z \hat{\pi}=P_{Z} y_{2}, \quad \text { where } \quad P_{Z} \equiv Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}
$$

It follows that the 2SLS estimator, defined as a regression of y_{1} on $\left[\begin{array}{ll}Z_{1} & \hat{y}_{2}\end{array}\right]$, is calculated as:
noting that P_{Z} is symmetric and idempotent.

Control Functions

Now, consider an alternate way of estimating these parameters. To this end, first write the linear projection of u onto ν as:

We can then substitute this equation into our regression equation of interest to obtain:

This looks like a multiple regression where the η term is uncorrelated with the included regressors, since
where the last line follows since $E\left(Z^{\prime} u\right)=0$ (valid IV s) and $E\left(Z^{\prime} \nu\right)=0$ (linear projection).

Control Functions

So, it seems as if we could estimate β_{1}, β_{2} and ρ from a regression of y_{1} on Z_{1}, y_{2} and ν. However, ν is unknown.
An intuitive idea is to replace ν with the estimated residuals from the first-stage:

We can then estimate the regression:
and expect that the added covariate, $\hat{\nu}$ will control for or correct the endogeneity problem.

Control Functions

We can take this further and investigate the resulting estimator (to be called the "control function" estimator) in detail. First, let

$$
X_{1} \equiv\left[\begin{array}{ll}
Z_{1} & y_{2}
\end{array}\right] \quad \text { and } \quad X \equiv\left[\begin{array}{ll}
X_{1} & \hat{\nu}
\end{array}\right]=\left[\begin{array}{lll}
Z_{1} & y_{2} & M_{z} y_{2}
\end{array}\right] .
$$

The matrix X then denotes the full covariate matrix, and we obtain
where "CF" is an abbreviation for "Control Function."

Control Functions

We are interested in the first two components of this vector in particular, to see how their estimated values compare to the 2SLS estimator. We can again use our Frisch-Waugh-Lovell / "Short vs. Long" / Partitioned Inverse result to obtain:
where

$$
\begin{aligned}
M & \equiv I_{n}-M_{z y_{2}}\left(y_{2}^{\prime} M_{Z}^{\prime} M_{z} y_{2}\right)^{-1}\left(M_{z} y_{2}\right)^{\prime} \\
& =I_{n}-M_{z y_{2}}\left(y_{2}^{\prime} M_{z} y_{2}\right)^{-1} y_{2}^{\prime} M_{z}
\end{aligned}
$$

Control Functions

So, let's now take a closer look at the formula for the CF estimator. First, note:

$$
X_{1}^{\prime} M=\left[\begin{array}{l}
Z_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]\left(I_{n}-M_{Z} y_{2}\left(y_{2}^{\prime} M_{Z} y_{2}\right)^{-1} y_{2}^{\prime} M_{Z}\right)
$$

Since $Z_{1}^{\prime} M_{Z}=0$ (because $Z^{\prime} M_{Z}=0$, and Z_{1} is a subset of Z) This becomes:

$$
\begin{aligned}
X_{1}^{\prime} M & =\left[\begin{array}{c}
Z_{1}^{\prime}\left(I_{n}-M_{Z} y_{2}\left(y_{2}^{\prime} M_{Z} y_{2}\right)^{-1} y_{2}^{\prime} M_{z}\right) \\
y_{2}^{\prime}\left(I_{n}-M_{Z} y_{2}\left(y_{2}^{\prime} M_{Z} y_{2}\right)^{-1} y_{2}^{\prime} M_{z}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
Z_{1}^{\prime} \\
y_{2}^{\prime}-y_{2}^{\prime} M_{Z} y_{2}\left(y_{2}^{\prime} M_{Z} y_{2}\right)^{-1} y_{2}^{\prime} M_{Z}
\end{array}\right] \\
& =\left[\begin{array}{c}
Z_{1}^{\prime} \\
y_{2}^{\prime}\left(I_{n}-M_{Z}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
Z_{1}^{\prime} \\
y_{2}^{\prime} P_{Z}
\end{array}\right]
\end{aligned}
$$

Control Functions

Therefore,
which we recognize as the same inverse term involved in the 2SLS calculation.

Control Functions

Similarly,
which is, again, the same as 2SLS.

So, what we have shown is an equivalent way to calculate the 2SLS estimator - the control function approach.

However, note that the usual OLS standard errors will not be correct, as they will not correct for the fact that a regressor has been estimated / generated. You can calculate the 2SLS standard errors directly, use the bootstrap in this case (672) or apply a formal correction [e.g., Murphy and Topel (1985, JBES)].

