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Linear Projection
Let’s start out with a little detour to review linear projection.
Write (consider a representative observation, rather than the equation
stacked over all observations)

y = β0 + xβ1 + ν,

where x is 1× k and

It follows that

E (ν) = E (y)− β0 − E (x)β1 = E (y)− [E (y)− E (x)β1]− E (x)β1 = 0.

In addition, note (since ν is mean-zero):
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Linear Projection
where (x − E (x)) is, again, 1× k so that

[x − E (x)]′[y − E (y)] = [x − E (x)]′[x − E (x)]β1 + [x − E (x)]′ν.

Taking expectations through, and noting again that ν is mean-zero, we
obtain:

and given the definition of β1 above, we obtain

Note that this decomposition is really definitional; however, this does not
imply that ν and x are independent or that E (ν|x) = 0. The linear
projection should not be confused with the conditional expectation; when
we assume E (ν|x) = 0, we are assuming that the conditional expectation
function is linear (and would, then, coincide with the linear projection).
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2SLS Revisited
Consider a general regression model with an endogeneity problem:

where y2 is considered endogenous, but Z1 is exogneous, in a sense to be
defined formally below. Here, we suppose that y2 is a scalar random
variable, but it need not be, and the arguments that follow generalize to
the case of multiple endogenous variables (assuming the model is
identified).
A set of instruments Z , (which is n × l , and includes Z1 as a strict subset)
is available, and are assumed to satisfy the orthogonality condition:

Implementation of the 2SLS estimator first requires fitted values for y2. To
obtain these, we consider the first-stage model (which we think about as a
linear projection of y2 onto Z ):
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2SLS Revisited
leading to

ŷ2 = Z π̂ = PZy2, where PZ ≡ Z (Z ′Z )−1Z ′.

It follows that the 2SLS estimator, defined as a regression of y1 on [Z1 ŷ2],
is calculated as:

noting that PZ is symmetric and idempotent.
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Control Functions

Now, consider an alternate way of estimating these parameters. To this
end, first write the linear projection of u onto ν as:

We can then substitute this equation into our regression equation of
interest to obtain:

This looks like a multiple regression where the η term is uncorrelated with
the included regressors, since

where the last line follows since E (Z ′u) = 0 (valid IVs) and E (Z ′ν) = 0
(linear projection).
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Control Functions

So, it seems as if we could estimate β1, β2 and ρ from a regression of y1
on Z1, y2 and ν. However, ν is unknown.
An intuitive idea is to replace ν with the estimated residuals from the
first-stage:

We can then estimate the regression:

and expect that the added covariate, ν̂ will control for or correct the
endogeneity problem.
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Control Functions

We can take this further and investigate the resulting estimator (to be
called the “control function” estimator) in detail. First, let

X1 ≡ [Z1 y2] and X ≡ [X1 ν̂] = [Z1 y2 MZy2].

The matrix X then denotes the full covariate matrix, and we obtain

where “CF” is an abbreviation for “Control Function.”
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Control Functions

We are interested in the first two components of this vector in particular,
to see how their estimated values compare to the 2SLS estimator. We can
again use our Frisch-Waugh-Lovell / “Short vs. Long” / Partitioned
Inverse result to obtain:

where

M ≡ In −MZy2(y ′2M
′
ZMZy2)−1(MZy2)′

= In −MZy2(y ′2MZy2)−1y ′2MZ
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Control Functions
So, let’s now take a closer look at the formula for the CF estimator. First,
note:

X ′1M =

[
Z ′1
y ′2

] (
In −MZy2(y ′2MZy2)−1y ′2MZ

)
.

Since Z ′1MZ = 0 (because Z ′MZ = 0, and Z1 is a subset of Z ) This
becomes:

X ′1M =

[
Z ′1

(
In −MZy2(y ′2MZy2)−1y ′2MZ

)
y ′2

(
In −MZy2(y ′2MZy2)−1y ′2MZ

) ]
=

[
Z ′1

y ′2 − y ′2MZy2(y ′2MZy2)−1y ′2MZ

]
=

[
Z ′1

y ′2(In −MZ )

]
=

[
Z ′1

y ′2PZ

]
.
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Control Functions
Therefore,

which we recognize as the same inverse term involved in the 2SLS
calculation.
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Control Functions

Similarly,

which is, again, the same as 2SLS.

So, what we have shown is an equivalent way to calculate the 2SLS
estimator - the control function approach.

However, note that the usual OLS standard errors will not be correct, as
they will not correct for the fact that a regressor has been estimated /
generated. You can calculate the 2SLS standard errors directly, use the
bootstrap in this case (672) or apply a formal correction [e.g., Murphy and
Topel (1985, JBES)].
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