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Introduction

The linear regression model is the workhorse of econometrics.

In this series of lectures, we will cover the following topics related to
the regression model:
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The basic linear regression specification is given as follows:

yi = xiβ + εi .

Here, i is a subscript that indexes the observations, i = 1, 2, . . . , n.

yi is a scalar outcome variable. We seek to determine how changes in
x affect y .

xi is a 1× k vector of explanatory variables. Specifically,

xi = [xi1 xi2 · · · xik ].

There are k different variables employed in the regression model.
Typically, xi1 = 1 ∀i so that the model contains an intercept
parameter.
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yi = xiβ + εi .

β is a k × 1 vector of fixed, but unknown parameters. We seek to use
the data {(xi , yi )}ni=1 to estimate β.

εi is an error term, picking up factors that explain variation in y that
are not captured by x . In some introductory texts, the following
assumption is made:

E (εi ) = 0.

Complete on your own:

(Why is this not really much of an assumption? What if the mean of
εi was, say, c instead?)
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Complete on your own:

We will also begin by assuming that the errors are independently
distributed and homoscedastic, i.e.,

E (ε2i |X ) = σ2 ∀i .
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Vector/Matrix Representation

yi = xiβ + εi .

This regression equation holds for each observation i . We can stack this
information across observations as follows:

y1
y2
...
yn

 =


x1
x2
...
xn

β +


ε1
ε2
...
εn

 ,
or, written out completely,

y1
y2
...
yn

 =


x11 x12 · · · x1k
x21 x22 · · · x2k

...
...

. . .
...

xn1 xn2 · · · xnk



β1
β2
...
βk

+


ε1
ε2
...
εn

 .
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Vector/Matrix Representation

We write this compactly as

y = Xβ + ε,

where y is n× 1, X is n× k , β is k × 1 and ε is n× 1. The columns of the
X matrix list the different variables employed in the analysis while the rows
list the values of all variables for each observation.
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Example
To fix ideas, consider the following regression equation:

You record a bunch of information from a survey, stack the quantities into
vectors and obtain

y = Wage =



15
25
18
35
...

20


, Education =



12
12
16
11
...

20


.

Importantly,
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Example, Continued

When writing the equation

y = Xβ + ε,

note

X =

 ...
...


ε =



ε1
ε2
ε3
ε4
...
εn


, β =

[
β1
β2

]
.
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Example, Continued

When writing the equation

y = Xβ + ε,

note

X =



1 12

1 12

1 16

1 11

...
...

1 20


, ε =



ε1
ε2
ε3
ε4
...
εn


.

The COLUMNS of X are formed of the various right-hand side explanatory
variables. The first column, for example, is a column of ones (for the
intercept parameter).
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Example, Continued

When writing the equation

y = Xβ + ε,

note

X =



1 12

1 12

1 16

1 11

...
...

1 20


, ε =



ε1
ε2
ε3
ε4
...
εn


.
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Example, Continued

Other variables could be added in the obvious way ...

note

X =



1 12 0

1 12 1

1 16 3

1 11 0

...
...

...

1 20 1


, ε =



ε1
ε2
ε3
ε4
...
εn


.

The new variable Siblings is added as the third column of X .
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Vector/Matrix Representation

For later purposes, it is also useful to note an alternate way to represent
the matrix X ′X as well as similar quantities. To this end, note:

X ′X =


x ′1
x ′2
...
x ′k

 [x1 x2 · · · xk ]

=


x ′1x1 x ′1x2 · · · x ′1xk
x ′2x1 x ′2x2 · · · x ′2xk

...
...

. . .
...

x ′kx1 x ′kx2 · · · x ′kxk

 .
where x j ≡ [x1j x2j · · · xnj ]

′, the j th column of X .
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Vector/Matrix Representation
Likewise,
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Vector/Matrix Representation

Similarly, other expressions like the k × 1 vector X ′ε can be written as

X ′ε =
∑
i

x ′i εi .

Writing the products in this way will prove to be convenient in terms of
the asymptotic derivations that will come later.
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Assumptions of the Regression Model

Before discussing estimation, we must first set forth some
assumptions regarding the regression model.

Some of these assumptions are more critical than others, and some of
these can be relaxed without too much difficulty.

You should not think of these as being obvious or necessarily satisfied;
the seeming validity of the assumptions that follow will vary with the
application at hand.
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Assumptions of the Regression Model

The matrix X is full column rank, i.e., Rank(X ) = k . (What does
this mean?)

When will this assumption most likely fail?
Poor specification choice on the part of the researcher, e.g.:

yi = α0 + α1Malei + α2Femalei + α3Educationi + εi .

Wagei = β0 + β1age + β2Education + β3Experience + ui .
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Assumptions of the Regression Model
Another possible case where the assumption will fail is because of
unexpected small sample problems:

yi = α0Northi + α1Southi + Educationi + εi

X =


1 0 12
1 0 12
0 1 16
0 1 16

 .
In these cases, (X ′X )−1 does not exist. In many standard software
packages, the program will often decide to drop a variable when this
problem persists.

In the context of a simple regression model, where only one x is
included, you may have seen this assumption described as “There is
some variation in x .”
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Assumptions of the Regression Model

With respect to the error terms, we will assume the following:

E (ε|X ) = 0,

an assumption commonly referred to as mean-independence.
In many cases, we could replace this with the weaker assumption:

E (X ′ε) = 0,

Complete on your own:
Why is this a weaker assumption?
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Assumptions of the Regression Model

Complete on your own:

To show that these two statements are not synonymous, can you find a
case where E (XY ) = 0 but E (X |Y ) 6= 0?
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Assumptions of the Regression Model

The mean-independence assumption is critical, and you should not
think it will be satisfied in all cases.

Specifically, in models with endogeneity problems, models with
measurement error in the right-hand side variables, and simultaneous
equations models, this assumption will be violated.

As a result, the properties of standard estimators are poor (as we will
discuss later in the course), and other estimators can be used to
restore these desirable properties.

Consider:
Wagei = β0 + β1Educationi + εi .

Do you think E (ε|Education) = 0?
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Assumptions of the Regression Model

For now, we will also make an assumption regarding the second moment of
ε:

E (εε′|X ) = Var(ε|X ) = σ2In.

As stated before, this is a homoscedasticity assumption.

This assumption is not required to derive many properties of the OLS
estimator, but will be needed in order to characterize the asymptotics of
this estimator.

Later, we will discuss how this assumption can be relaxed, and replaced by
a more realistic assumption of heteroscedasticity.
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