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Estimation

In this lecture, we address estimation of the linear regression model.

There are many objective functions that can be employed to obtain
an estimator; here we discuss the most common one that delivers the
familiar OLS estimator.

We then discuss issues of parameter interpretation, prediction and
review details associated with R-squared.
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Estimation

yi = xiβ + εi .

The most widely employed approach seeks to minimize the contribution of
the error term εi by minimizing the sum of squared residuals:

min
β̃

∑
i

(yi − xi β̃)2 = min
β̃1,β̃2,...,β̃k

∑
i

(yi − β̃1 − β̃2xi2 − · · · − β̃kxik)2.

Unlike the simple regression case, where we consider k = 2 specifically,
and derive an estimator for that particular case, we seek to obtain an
estimator when k is an arbitrary number.
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Estimation

A “representative” first-order condition from this objective function
(differentiating with respect to β̃j) yields an equation of the form:

This implies that, for the intercept parameter:

The complete vector β̂ is obtained as the solution of this set of k
equations in k unknowns.
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Estimation

We can assemble these k equations together in vector / matrix form as:
x11 x21 · · · xn1
x12 x22 · · · xn2

...
...

. . .
...

x1k x2k · · · xnk





y1
y2
...

yn

−


x11 x12 · · · x1k
x21 x22 · · · x2k

...
...

. . .
...

xn1 xn2 · · · xnk



β̂1
β̂2
...

β̂k


 =


0
0
...
0

 .
or, compactly in terms of our regression notation,

Under the assumptions of our regression model, then,
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Estimation

Of course, arriving at β̂ = (X ′X )−1X ′y is easier and more direct if we
simply apply rules governing vector differentiation. (See, Appendix A).
That is, we seek to minimize:

min
β̃

(y − X β̃)′(y − X β̃)

or
min
β̃

(
y ′y − β̃′X ′y − y ′X β̃ + β̃′X ′X β̃

)
.

Differentiating with respect to the vector β̃ and setting the result to zero
gives:

−2X ′y + 2X ′X β̂ = 0

or
β̂ = (X ′X )−1X ′y .
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Estimation

Thus we have a simple-to-calculate, closed form solution for the
estimated coefficient vector.

Given this estimated coefficient vector, fitted (predicted) values are
easily obtained:

ŷ = X β̂

as are the residuals:
ε̂ = y − X β̂.
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Interpretation

As you all know, multiple regression is advantageous in that it allows
the researcher to “control” for other factors when determining the
effect of a particular xj on y.

Indeed, the language “After controlling for the influence of other
factors, the marginal effect of xj on y is β̂j” is commonly used.

In the following subsection, we justify this interpretation in a more
formal way.
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Interpretation

Consider the regression model:

y = X1β1 + x2β2 + ε.

Here, X1 represents a set of covariates that are important to account
for, but are not necessarily the objects of interest.

x2 is regarded as a vector (for simplicity and without loss of
generality), so that β1 is a (k − 1) × 1 vector while β2 is a scalar.

Some questions: How can we get β̂2 directly? Does this provide any
insight behind the interpretation of multiple regression coefficients?
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Interpretation

y = X1β1 + x2β2 + ε.

We can write this as

y = [X1 x2]

[
β1
β2

]
+ ε.

To calculate
β̂ = (X ′X )−1X ′y ,

we then note that

X ′X =

[
X ′1
x ′2

]
[X1 x2] =

[
X ′1X1 X ′1x2
x ′2X1 x ′2x2

]
.
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Interpretation

y = X1β1 + x2β2 + ε.

Likewise,

X ′y =

[
X ′1
x ′2

]
y =

[
X ′1y
x ′2y

]
.

Putting these two equations together, we then obtain:[
X ′1X1 X ′1x2
x ′2X1 x ′2x2

] [
β̂1
β̂2

]
=

[
X ′1y
x ′2y

]
.

This produces two “equations:” the first, a vector-valued equation for β̂1
and the second a scalar equation for β̂2.
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Interpretation

The first of these equations gives:

We can rearrange this to get:

The second of these equations also gives:
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Interpretation

The last slide gave two equations in two unknowns. We can substitute the
first of these into the second to get an expression that only involves β̂2:

Regrouping terms gives:

Let us define

so that

This provides a “direct” way to estimate the short regression coefficient β2.
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Interpretation

The matrix M1 has some nice properties:

M1 is symmetric:

M1 is idempotent:
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Interpretation

With this in mind, we provide an alternate way to obtain β̂2 which helps to
clarify its interpretation:

Theorem

β̂2 can be obtained from the following two-step procedure:

1

2
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Interpretation

Proof.

The proof of this result is straightforward. To see this, consider the
regression in step 1:

x2 = X1θ + u

The estimated residuals are obtained as:
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Interpretation

Proof.

In the second step, we fit the regression:

y = γû + η.

Therefore,
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Interpretation

So, β̂2 can be obtained from this two-step procedure.

The procedure is rather intuitive: The way that we estimate β2 is to
first find the part of x2 that cannot be (linearly) explained by X1.
(These are the residuals, û). We then regress y on this “leftover”
part of x2 to get β̂2.

This procedure is often referred to as residual regression. It also
clearly justifies our common interpretation of the coefficient as “after
controlling for the effect of X1.”
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Coefficient of Determination: R2

Undoubtedly, most (all?) of you are familiar with the coefficient of
determination or R2.

R2 is often a useful diagnostic, measuring the proportion of variation
in the data that is explainable by variation among the explanatory
variables in the model.

In what follows, we briefly review its derivation and discuss some of
its properties.
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Coefficient of Determination: R2

To begin, define the total sum of squares (TSS) as follows:

Likewise, we can define the explained sum of squares (ESS) as follows:

and, again, in vector / matrix form, this can be written as:

and the residual sum of squares:
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Coefficient of Determination: R2

We now introduce two results, both rather obvious, but will be needed
when constructing R2:

ι′ε̂ = 0

Proof.

Our second result states:
(ŷ − ιy)′ ε̂ = 0.
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Coefficient of Determination: R2

Proof.

The second line follows from the result we have just proved. The last line
again follows from the fact that X ′ε̂ = 0, by construction of the OLS
estimator.
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Coefficient of Determination: R2

With these result in hand, we can now derive R2. To this end, note:

which implies

Since this holds for each element of the above vectors, the sum of squared
elements must also be equal:

Using our previous result, the right hand side reduces to:

or
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Coefficient of Determination: R2

The coefficient of determination, R2 is then defined as:

R2 =
ESS

TSS
or R2 = 1 − RSS

TSS
.

Some properties:
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