Regression \#2

Econ 671

Purdue University

Estimation

- In this lecture, we address estimation of the linear regression model.
- There are many objective functions that can be employed to obtain an estimator; here we discuss the most common one that delivers the familiar OLS estimator.
- We then discuss issues of parameter interpretation, prediction and review details associated with R-squared.

Estimation

$$
y_{i}=x_{i} \beta+\epsilon_{i}
$$

The most widely employed approach seeks to minimize the contribution of the error term ϵ_{i} by minimizing the sum of squared residuals:

$$
\min _{\tilde{\beta}} \sum_{i}\left(y_{i}-x_{i} \tilde{\beta}\right)^{2}=\min _{\tilde{\beta}_{1}, \tilde{\beta}_{2}, \ldots, \tilde{\beta}_{k}} \sum_{i}\left(y_{i}-\tilde{\beta}_{1}-\tilde{\beta}_{2} x_{i 2}-\cdots-\tilde{\beta}_{k} x_{i k}\right)^{2} .
$$

Unlike the simple regression case, where we consider $k=2$ specifically, and derive an estimator for that particular case, we seek to obtain an estimator when k is an arbitrary number.

Estimation

A "representative" first-order condition from this objective function (differentiating with respect to $\tilde{\beta}_{j}$) yields an equation of the form:

This implies that, for the intercept parameter:

The complete vector $\hat{\beta}$ is obtained as the solution of this set of k equations in k unknowns.

Estimation

We can assemble these k equations together in vector / matrix form as:
$\left[\begin{array}{cccc}x_{11} & x_{21} & \cdots & x_{n 1} \\ x_{12} & x_{22} & \cdots & x_{n 2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1 k} & x_{2 k} & \cdots & x_{n k}\end{array}\right]\left(\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]-\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 k} \\ x_{21} & x_{22} & \cdots & x_{2 k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n 1} & x_{n 2} & \cdots & x_{n k}\end{array}\right]\left[\begin{array}{c}\hat{\beta}_{1} \\ \hat{\beta}_{2} \\ \vdots \\ \hat{\beta}_{k}\end{array}\right]\right)=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$ or, compactly in terms of our regression notation,

Under the assumptions of our regression model, then,

Estimation

Of course, arriving at $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ is easier and more direct if we simply apply rules governing vector differentiation. (See, Appendix A). That is, we seek to minimize:

$$
\min _{\tilde{\beta}}(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})
$$

or

$$
\min _{\tilde{\beta}}\left(y^{\prime} y-\tilde{\beta}^{\prime} X^{\prime} y-y^{\prime} X \tilde{\beta}+\tilde{\beta}^{\prime} X^{\prime} X \tilde{\beta}\right) .
$$

Differentiating with respect to the vector $\tilde{\beta}$ and setting the result to zero gives:

$$
-2 X^{\prime} y+2 X^{\prime} X \hat{\beta}=0
$$

or

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y .
$$

Estimation

- Thus we have a simple-to-calculate, closed form solution for the estimated coefficient vector.
- Given this estimated coefficient vector, fitted (predicted) values are easily obtained:

$$
\hat{y}=X \hat{\beta}
$$

- as are the residuals:

$$
\hat{\epsilon}=y-X \hat{\beta}
$$

Interpretation

- As you all know, multiple regression is advantageous in that it allows the researcher to "control" for other factors when determining the effect of a particular x_{j} on y.
- Indeed, the language "After controlling for the influence of other factors, the marginal effect of x_{j} on y is $\hat{\beta}_{j}$ " is commonly used.
- In the following subsection, we justify this interpretation in a more formal way.

Interpretation

Consider the regression model:

$$
y=X_{1} \beta_{1}+x_{2} \beta_{2}+\epsilon
$$

- Here, X_{1} represents a set of covariates that are important to account for, but are not necessarily the objects of interest.
- x_{2} is regarded as a vector (for simplicity and without loss of generality), so that β_{1} is a $(k-1) \times 1$ vector while β_{2} is a scalar.
- Some questions: How can we get $\hat{\beta}_{2}$ directly? Does this provide any insight behind the interpretation of multiple regression coefficients?

Interpretation

$$
y=X_{1} \beta_{1}+x_{2} \beta_{2}+\epsilon .
$$

We can write this as

$$
y=\left[\begin{array}{ll}
X_{1} & x_{2}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]+\epsilon .
$$

To calculate

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y,
$$

we then note that

$$
X^{\prime} X=\left[\begin{array}{l}
X_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]\left[\begin{array}{ll}
X_{1} & x_{2}
\end{array}\right]=\left[\begin{array}{cc}
X_{1}^{\prime} X_{1} & X_{1}^{\prime} x_{2} \\
x_{2}^{\prime} X_{1} & x_{2}^{\prime} x_{2}
\end{array}\right] .
$$

Interpretation

$$
y=X_{1} \beta_{1}+x_{2} \beta_{2}+\epsilon
$$

Likewise,

$$
x^{\prime} y=\left[\begin{array}{l}
X_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right] y=\left[\begin{array}{l}
X_{1}^{\prime} y \\
x_{2}^{\prime} y
\end{array}\right] .
$$

Putting these two equations together, we then obtain:

$$
\left[\begin{array}{ll}
X_{1}^{\prime} X_{1} & X_{1}^{\prime} x_{2} \\
x_{2}^{\prime} X_{1} & x_{2}^{\prime} x_{2}
\end{array}\right]\left[\begin{array}{l}
\hat{\beta}_{1} \\
\hat{\beta}_{2}
\end{array}\right]=\left[\begin{array}{l}
X_{1}^{\prime} y \\
x_{2}^{\prime} y
\end{array}\right] .
$$

This produces two "equations:" the first, a vector-valued equation for $\hat{\beta}_{1}$ and the second a scalar equation for $\hat{\beta}_{2}$.

Interpretation

The first of these equations gives:

We can rearrange this to get:

The second of these equations also gives:

Interpretation

The last slide gave two equations in two unknowns. We can substitute the first of these into the second to get an expression that only involves $\hat{\beta}_{2}$:

Regrouping terms gives:

Let us define
so that
-
This provides a "direct" way to estimate the short regression coefficient β_{2}.

Interpretation

The matrix M_{1} has some nice properties:

- M_{1} is symmetric:
- M_{1} is idempotent:

Interpretation

With this in mind, we provide an alternate way to obtain $\hat{\beta}_{2}$ which helps to clarify its interpretation:

Theorem

$\hat{\beta}_{2}$ can be obtained from the following two-step procedure:
(1)
(2)

Interpretation

Proof.

The proof of this result is straightforward. To see this, consider the regression in step 1 :

$$
x_{2}=X_{1} \theta+u
$$

The estimated residuals are obtained as:

Interpretation

Proof.

In the second step, we fit the regression:

$$
y=\gamma \hat{u}+\eta .
$$

Therefore,

Interpretation

- So, $\hat{\beta}_{2}$ can be obtained from this two-step procedure.
- The procedure is rather intuitive: The way that we estimate β_{2} is to first find the part of x_{2} that cannot be (linearly) explained by X_{1}. (These are the residuals, \hat{u}). We then regress y on this "leftover" part of x_{2} to get $\hat{\beta}_{2}$.
- This procedure is often referred to as residual regression. It also clearly justifies our common interpretation of the coefficient as "after controlling for the effect of X_{1}."

Coefficient of Determination: R^{2}

- Undoubtedly, most (all?) of you are familiar with the coefficient of determination or R^{2}.
- R^{2} is often a useful diagnostic, measuring the proportion of variation in the data that is explainable by variation among the explanatory variables in the model.
- In what follows, we briefly review its derivation and discuss some of its properties.

Coefficient of Determination: R^{2}

To begin, define the total sum of squares (TSS) as follows:

Likewise, we can define the explained sum of squares (ESS) as follows:
and, again, in vector / matrix form, this can be written as:
and the residual sum of squares:

Coefficient of Determination: R^{2}

We now introduce two results, both rather obvious, but will be needed when constructing R^{2} :

$$
\iota^{\prime} \hat{\epsilon}=0
$$

Proof.

Our second result states:

$$
(\hat{y}-\iota \bar{y})^{\prime} \hat{\epsilon}=0 .
$$

Coefficient of Determination: R^{2}

Proof.

The second line follows from the result we have just proved. The last line again follows from the fact that $X^{\prime} \hat{\epsilon}=0$, by construction of the OLS estimator.

Coefficient of Determination: R^{2}

With these result in hand, we can now derive R^{2}. To this end, note:
which implies

Since this holds for each element of the above vectors, the sum of squared elements must also be equal:

Using our previous result, the right hand side reduces to:
or

Coefficient of Determination: R^{2}

The coefficient of determination, R^{2} is then defined as:

$$
R^{2}=\frac{E S S}{T S S} \text { or } R^{2}=1-\frac{R S S}{T S S} .
$$

Some properties:

