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Introduction

@ In this lecture, we continue investigating properties associated with
the OLS estimator.

@ Our focus now turns to a derivation of the asymptotic normality of
the estimator as well as a proof of a well-known efficiency property,
known as the Gauss-Markov Theorem.
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NS
Asymptotic Normality

To begin, let us consider the regression model when the error terms are
normally distributed:

yi = x;i3 + €, €| X~N (0, 02l,,).

In this case, the sampling distribution of 3 (given X) is immediate:
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NS
Asymptotic Normality

Since
€| X NN(O,O’ZI,,) ,

it follows that

Thus, the sampling distribution follows a normal distribution, with the
mean and covariance matrix derived in the previous lecture.
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NS
Asymptotic Normality

@ In many cases, however, we do not want to assume that the errors are
normally distributed.

o If we replace the Gaussian assumption with something different,
however, it can prove to be quite difficult to determine the exact
(finite sample) sampling distribution of the OLS estimator.

@ Instead, we can look for a large sample approximation that works for
a variety of different cases. The approximation will be exact as
n — oo, and we will take it as a reasonable approximation in data sets
of moderate or small sizes.

Justin L. Tobias (Purdue) Regression #4 5/24



Asymptotic Normality

With a minor abuse of the theorem itself, we first introduce the
Lindberg-Levy CLT:

Theorem

Justin L. Tobias (Purdue) Regression #4 6 /24



Asymptotic Normality

It remains for us to figure out how to apply this result to (approximately)
characterize the sampling distribution of the OLS estimator.
To this end, let us write:

b= (X'X)Xy
B+ (X' X)X e

Rearranging terms and multiplying both sides by a \/n, we can write
o
and we note from our very first lecture that
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NS
Asymptotic Normality

Thus, the term (y/n)~1X’e can be written as:

In this last form, we can see that this term is simply a sample average of
k x 1 vectors xej, scaled by /n. Such quantities fall under the
“jurisdiction” of the Lindberg-Levy CLT.
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NS
Asymptotic Normality

Specifically, we can apply this CLT once we characterize the mean and
covariance matrix of the terms appearing within the summation. To this
end, note:

o

and

Hence, we can apply the Lindberg-Levy CLT to give:
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NS
Asymptotic Normality

As for the other key term appearing in our expression for \/n(3 — 3), we
note:

so that

OK, so let's review:
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Asymptotic Normality

Based on earlier derivations, the right hand side (Slutsky) must converge
in distribution to:

or

We can then write:
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Asymptotic Normality

In practice, we replace the unknown population quantity

[EX (X,{X;)]

-1

with a consistent estimate:

[,17 Zx{x;] B = [nX’X} Ty [Ec(xix)] 7"

Thus,

We can also get an asymptotic result for the quadratic form:
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Asymptotic Normality

@ Note that we did not assume normality to get this result; provided the
assumptions of the regression model are satisfied, the sampling
distribution of 5 will be approximately normally distributed.

@ This result will form the basis for testing hypotheses regarding 3, as
we will discuss in the following lectures.
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Gauss-Markov Theorem

We now move on to discuss an important result, related to the efficiency
of the OLS estimator, known as the Gauss-Markov Theorem.

This theorem states:

Justin L. Tobias (Purdue) Regression #4 14 / 24



Gauss-Markov Theorem

We will first prove this result for any linear combination of the elements of

8.

That is, suppose we seek to estimate

where c is an arbitrary k x 1 selector vector. For example,

would select the intercept parameter. We seek to show that the OLS
estimator of p,

has a variance at least as small as any other linear, unbiased estimator of
L.
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Gauss-Markov Theorem

To establish this result, let us first consider any other linear, unbiased

estimator of . Call this estimator h. Linearity implies that h can be
written in the form:
o

for some n x 1 vector a.
We note that
°
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Gauss-Markov Theorem

For unbiasedness to hold, it must be the case that

or (since this must apply for any 5 and c¢):
o

Now,
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Gauss-Markov Theorem

The variance of our candidate estimator is:

Comparing these, we obtain:

Clearly, this is greater than or equal to zero, right?
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Gauss-Markov Theorem

Actually it is. To see this, note:

The last line follows as the product represents a sum of squares.
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Gauss-Markov Theorem

Does this result hold unconditionally?
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Gauss-Markov Theorem

We will now prove this in a more general way, by directly comparing the
covariance matrices between the two estimators.

Let él and @2 be two unbiased estimators of §. We would say that @1 is
more efficient than 0> if the difference between the covariance matrices is
negative semidefinite. That is, for any k x 1 vector x # 0,

X' (Var(él) — Var(GAz)) x <0.

This implies that element-by-element (and in terms of linear
combinations), that 6 is preferable to 65.
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Gauss-Markov Theorem

Consider any other linear estimator of 3,
°
where A* is k x n and nonstochastic, given X. In terms of unbiasedness,
°
so that unbiasedness implies
°
Write
°
where D is arbitrary. We then note:
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Gauss-Markov Theorem

Similarly,

The condition that A*X = I, must mean that DX = 0. This makes all the
cross terms in the above vanish since, for example,

Therefore,
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Gauss-Markov Theorem

Let us now consider the variance of our candidate estimator:

Taking this further,

The matrix DD’ is postive semidefinite, since x’DD’x is again a sum of
squares. This difference is strictly positive unless D = 0, in which case

B=5.

We conclude that BA is more efficient than f.
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