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Introduction

In the last lecture, we established that, conditional on X and provided ε is
normally distributed:

How does this result change when we look at linear combinations of
elements of β?

To this end, let us consider a p × k “selector” matrix R with
rank(R) = p ≤ k .
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Introduction
For example, setting

leads to Rβ selecting of the first slope parameter, β2.

Similarly, setting

leads to Rβ selecting β2 − β3.

Finally, choosing

implies that

Lots of other constructions are possible.
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Linear Combinations
We seek to obtain a distribution theory for this arbitrary linear
combination of elements of β̂. To this end, we start with

Which implies

or

In our previous lecture, we showed that a quadratic form of the above has
a chi-square distribution:

Replacing σ2 with its estimate, we obtain in an analogous manner:
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Linear Combinations

Consider the special case where p = 1, and R is a row vector containing a
one in the i th position and zeros elsewhere. For this special case, we
obtain

Or,

Taking the square root of both sides (and letting sβi denote the standard

deviation of β̂i ,) we obtain the familiar statistic:

a student-t distribution with n − k degrees of freedom.
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Linear Combinations

β̂i − βi
sβi

∼ tn−k .

Given this result, we can find a value, say t∗(α/2),n−k such that

(In practice these values are determined by looking up values from a table
for various α and n − k .) Subbing in for the tn−k random variable, we can
write:
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Linear Combinations

Rearranging, we obtain:

Thus, the interval

is commonly interpreted as a 100(1− α)% confidence interval for βi .
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Linear Combinations

Some observations:

As n − k →∞, tn−k → N (0, 1). Thus, when our data set is of
moderate size (and the number of covariates is modest), we can
obtain critical values from the Normal tables rather than the
student-t tables.

Some common choices follow from the Normal tables:
α = .1 (90 % Confidence interval) t∗.05,∞ = 1.65

α = .05 (95 % Confidence interval) t∗.025,∞ = 1.96

α = .01 (99 % Confidence interval) t∗.005,∞ = 2.58
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Joint Confidence Regions

Recall our F− statistic derived previously:

(Rβ̂ − Rβ)′
[
R(X ′X )−1R ′

]−1
(Rβ̂ − Rβ)

pσ̂2
∼ Fp,n−k .

Suppose we are interested in deriving a 100(1−α) %confidence region for

Naturally, we would construct this region as follows:

where F ∗p,n−k,α is a critical value of the Fp,n−k distribution such that the
area to the right of this value equals α.
In general, these regions are elliptical in shape.
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Confidence Regions, Example

To motivate this elliptical shape, consider the specific case where k = 2,
R = I2 and σ2 is assumed known and equal to unity.

Further, to fix ideas, suppose

so that ρ has the interpretation of a correlation parameter.
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Confidence Regions, Example

Multiplying all this out, it can be shown that an approximate 95%
Confidence Region is given as:

(This makes use of a Chi-square result, which we will demonstrate next
lecture). In the following graphs, we provide plots of these regions for two
cases: with ρ = 0 and ρ = .5.

We also provide a plot of a square that would be the naive “joint” region
obtained by considering β̂1 and β̂2 separately and piecing together this
marginal information.

Finally, we present these plots using βj − β̂j as the axes so that the plots
are centered at zero.
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Joint Confidence Region, ρ = 0
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Joint Confidence Region, ρ = .5
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Scalar Hypothesis Testing

For a scalar parameter of interest, βi we derived the result:

Pr

(∣∣∣∣ β̂i − βisβi

∣∣∣∣ ≤ t∗(α/2),n−k

)
= 1− α.

Thus, we should expect,

100(1− α) percent of the time, in repeated sampling.
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Scalar Hypothesis Testing

So, consider “testing” a null hypothesis of the form:

for some constant c against the alternative

We would then expect, if the null were true:

since this would be true most of the time (specifically, 100(1− α)
percentage of the time) in repeated sampling.

Justin L. Tobias (Purdue) Regression #6 15 / 33



Scalar Hypothesis Testing

Thus, if

we interpret this as an unusual event, providing evidence against the null
hypothesis being true. In this case, we reject the null in favor of the
alternative HA.
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Scalar Hypothesis Testing

A test of particular interest is whether or not a specific covariate xi
belongs in the model. In this case, it is natural to choose c = 0 and
perform the test above.

If we reject this null hypothesis (as we often hope to do), we would reject
H0 : βi = 0 at the 100α % level of significance.

Alternatively, we would say that β̂i is statistically significant at the 100α
% level.
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Scalar Hypothesis Testing

It is not, correct, however, to conclude that βi = c when∣∣∣∣ β̂i − c

sβi

∣∣∣∣ ≤ t∗(α/2),n−k

Indeed, other nulls of the form βi = c + ε would yield the same result. Can
we conclude that βi = c and βi = c + ε?

For this reason, it is proper to say in this instance that we fail to reject the
null, as the data simply has not provided sufficient evidence to conclude
that the null is (probably) false.
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Scalar Testing and p-values

Suppose you run a regression and implement a test of the hypothesis
that βi = 0.

When doing so, you find that you reject H0 : βi = 0 when setting
α = .1, but fail to reject when setting α = .05.

What should you do?

The fate of your paper hangs in the balance!
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Scalar Testing and p-values

A common practice in this situation is to calculate and report a p-value or
exact level of significance.

This (two-sided) p-value is defined as the (sampling) probability of getting
a value of the test statistic that is at least as extreme as the one you
obtained with your actual sample of data, given that the null is true
(whew!).

Formally, suppose we wish to test H0 : θ = θ0. Doing so produces an
observed test statistic equal to t(y). The p−value is:
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Scalar Testing and p-values

The “appeal” is that the p-value provides the level of significance, had it
been chosen prior to seeing the data, that would lead the researcher to be
just indifferent between rejecting and failing to reject. This essentially
places the burden on the reader to decide whether or not to “believe” that
θ = θ0.
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Scalar Testing and p-values

Small p-values are often considered to provide evidence against H0,
since we would fail to reject only under very small values of α.

Conversely, large p−values are often considered to provide support for
H0, since we could not reject at any “reasonable” level of α.

In fact, common practice in our profession supports this: when a
p ∈ (.05, .10], the associated coefficient estimate gets adorned with a
single star. When p ∈ (.01, .05], it gets two stars!! And, when
p ≤ .01, it gets THREE STARS!!! All other coefficients are left
undecorated and unwanted.
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Scalar Testing and p-values

Despite this convention, I think it is important to emphasize a few things:

The p value does not represent the probability of the null hypothesis
being true. (And, therefore, 1− p does not represent the probability
that the alternative is true).

In fact, that statement itself is not well-posed in classical statistics:
the null is either true or not true. The p-value does not represent a
degree of belief (or disbelief) about the statement in question.
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Scalar Testing and p-values

Consider the following (adapted from Jacob Cohen“The Earth is Round
(p < .05)” American Psychologist, 1994).

The logic of the p-value goes something like this:

If the hypothesis is true, I am very unlikely to observe a certain
feature/statistic of the data.

I observed that feature of the data.

Therefore, the hypothesis is unlikely to be true.
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Scalar Testing and p-values

But does this make sense in the context of the following?

H0 : Person is over 17

.

It is very unlikely that a (randomly selected) person over 17 will have
attended Purdue University.

I sample an individual, and observe that she attended Purdue.

Therefore, the person is unlikely to be over 17.

Wouldn’t you make exactly the opposition conclusion, upon observing
college attendance?
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Let’s cook up some numbers, just to illustrate the point.

Let P = 1 indicate the event that Purdue is attended. Let A = 1 denote
the event that age is over 17. Suppose the following joint distribution
describes this pair of outcomes:

P=1 P=0
A=0 0 .2
A=1 .001 .799

From this table, we see that

(so attending Purdue IS unlikely if you are over 17).
However,

That is, We are certain that the person is over 17, given that she attended
Purdue!
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The source of the problem on the previous page is that the p-value relates
to the probability of the data under the null hypothesis p(y |H0) while we
often (mistakenly) interpret it as the probability of the hypothesis given
the data: p(H0|y).

Bayesian statistics and econometrics provides a vehicle for making
probability statements about hypotheses - more on that later (if you are
sufficiently misguided to seek more).
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Consider another critical example associated with the p − value (think
about drug trials to fix ideas).

One set of independent observations produces a point estimate of a
parameter of interest θ1 as θ̂1 = 25, and Std .Err(θ̂1) = 10, leading the
researcher to conclude that θ1 6= 0. (SIGNIFICANT!)

A second set of independent observations for θ2 produces θ̂2 = 10, and
Std .Err(θ̂2) = 10, leading the researcher to fail to reject H0 : θ2 = 0.
(INSIGNIFICANT!)

When comparing θ1 and θ2, we obtain: θ̂1 − θ̂2 = 15,
Std .Err(θ̂1 − θ̂2) =

√
100 + 100 =

√
200 ≈ 14 and thus we cannot reject

H0 : θ1 = θ2. (INSIGNIFICANT!)
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How do we reconcile the following statements? (For more, see Andrew
Gelman, “P Values and Statistical Practice” Epidemiology, 2013).

(a) Drug one has beneficial health effects, and we reject the position
that it is ineffective.

(b) We can’t reject the position that drug 2 is ineffective.

(c) We can’t conclude that drug 1 and drug 2 are different from one
another.
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A final observation notes that the p-value is also, at least in part,
sample-size dependent. To fix ideas, suppose

(with σ2 known just to make things simple) so that

Suppose we wish to test the null H0 : µ = c , and collect a sample of n
observations yielding the observed sample mean xon. Then, the p-value
associated with this statistic and null hypothesis is:

since xn
p→ µ, for µ 6= c it is clear that p → 0 as the sample size grows.
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Other observations

The “significance” game is, unfortunately, widespread in economics.
Note, among other things that coefficients can be “made” to be
significant by simply acquiring more data. Such behind the scene
endeavors are surely common, though misplaced.

Pretesting is also an important, though hidden concern. This practice
refers to the selection of covariates after a series of initial regressions,
where coefficients with low t-stats are dropped, or models with low
R2 values are discarded. The reported uncertainty measures for the
selected model are then incorrect; indeed the probability of obtaining
a “signficant” coefficient in such a pursuit may be unity!
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Other observations

Keep in mind the importance of economic rather than statistical
significance.

A coefficient may have a moderate t statistic of, say, 1.5 and its
interval estimate may contain both zero and meaningfully large values.

Conversely, (particularly with large data sets), a coefficient may have
huge t-statistic, though its point and interval estimates cover
sufficiently small values that it makes little difference in practice (i.e.,
no economic or practical significance).
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Joint Testing

To finish this discussion, we quickly discuss how a joint hypothesis of the
form:

Rβ = r

would be implemented. To this end, we go back to our test statistic and
note that, if the null is true, then

(Rβ̂ − r)′[R(X ′X )−1R ′]−1(Rβ̂ − r) ≤ pσ̂2F ∗p,n−k,α

100(1− α) % of the time in repeated sampling. Thus a value of the test
statistic

(Rβ̂ − r)′[R(X ′X )−1R ′]−1(Rβ̂ − r)

pσ̂2

LARGER than the critical value leads to rejection of H0 : Rβ = r at the
given level of significance, and otherwise we fail to reject.

Justin L. Tobias (Purdue) Regression #6 33 / 33


